From 1730097c6f6d9627a909e104e511413a6612b9c9 Mon Sep 17 00:00:00 2001 From: Alexandre Duret-Lutz Date: Tue, 24 Sep 2019 10:47:28 +0200 Subject: [PATCH] * doc/tl/tl.tex: Mention X(0)=0. --- doc/tl/tl.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/doc/tl/tl.tex b/doc/tl/tl.tex index 9ec2ac0df..2406f0084 100644 --- a/doc/tl/tl.tex +++ b/doc/tl/tl.tex @@ -1495,13 +1495,13 @@ normal forms if $f$, handling non-Boolean sub-formulas as if they were atomic propositions. \begin{align*} - \X\F\G f & \equiv \F\G f & \F(f\U g) & \equiv \F g & \G(f \R g) & \equiv \G g \\ - \X\G\F f & \equiv \G\F f & \F(f\M g) & \equiv \F (f\AND g) & \G(f \W g) & \equiv \G(f\OR g) \\ -\F\X f & \equiv \X\F f & \F\G(f\AND \X g) & \equiv \F\G(f\AND g) & \G\F(f\OR \X g) & \equiv \G\F(f\OR g) \\ -\G\X f & \equiv \X\G f & \F\G(f\AND \G g) & \equiv \F\G(f\AND g) & \G\F(f\OR \F g) & \equiv \G\F(f\OR g) \\ - & & \F\G(f\OR\G g) & \equiv \F(\G f\OR\G g) & \G\F(f\AND\F g) & \equiv \G(\F f\AND\F g) \\ -\G\F f & \equiV \G\F(\mathsf{dnf}(f)) & \F\G(f\AND\F g) & \equiV \F\G f\AND\G\F g & \G\F(f\AND\G g) & \equiV \G\F f\AND\F\G g \\ -\F\G f & \equiV \F\G(\mathsf{cnf}(f)) & \F\G(f\OR\F g) & \equivEU \F\G f\OR\G\F g & \G\F(f\OR\G g) & \equivEU \G\F f\OR\F\G g +\X\F\G f & \equiv \F\G f & \F(f\U g) & \equiv \F g & \G(f \R g) & \equiv \G g \\ +\X\G\F f & \equiv \G\F f & \F(f\M g) & \equiv \F (f\AND g) & \G(f \W g) & \equiv \G(f\OR g) \\ +\F\X f & \equiv \X\F f & \F\G(f\AND \X g) & \equiv \F\G(f\AND g) & \G\F(f\OR \X g) & \equiv \G\F(f\OR g) \\ +\G\X f & \equiv \X\G f & \F\G(f\AND \G g) & \equiv \F\G(f\AND g) & \G\F(f\OR \F g) & \equiv \G\F(f\OR g) \\ +\X\0 & \equiv \0 & \F\G(f\OR\G g) & \equiv \F(\G f\OR\G g) & \G\F(f\AND\F g) & \equiv \G(\F f\AND\F g) \\ +\G\F f & \equiV \G\F(\mathsf{dnf}(f)) & \F\G(f\AND\F g) & \equiV \F\G f\AND\G\F g & \G\F(f\AND\G g) & \equiV \G\F f\AND\F\G g \\ +\F\G f & \equiV \F\G(\mathsf{cnf}(f)) & \F\G(f\OR\F g) & \equivEU \F\G f\OR\G\F g & \G\F(f\OR\G g) & \equivEU \G\F f\OR\F\G g \end{align*} \begin{align*} \G(f_1\OR\ldots\OR f_n \OR \G\F(g_1)\OR\ldots\OR \G\F(g_m)) & \equiv \G(f_1\OR\ldots\OR f_n)\OR \G\F(g_1\OR\ldots\OR g_m)