diff --git a/doc/tl/tl.tex b/doc/tl/tl.tex index 1670668dd..207086633 100644 --- a/doc/tl/tl.tex +++ b/doc/tl/tl.tex @@ -1481,8 +1481,8 @@ operator's arguments. For instance $\F\G(a)\AND \G(b) \AND \F\G(c) \AND The following more complicated rules are generalizations of $f\AND \X\G f\equiv \G f$ and $f\OR \X\F f\equiv \F f$: \begin{align*} - f\AND \X(\G(f\AND g\ldots)\AND h\ldots) &\equiv \G(f) \AND \X(\G(g\ldots)\AND h\ldots) \\ - f\OR \X(\F(f)\OR h\ldots) &\equiv \F(f) \OR \X(h\ldots) + f\AND \X(\G(f\AND g\AND \ldots)\AND h\AND \ldots) &\equiv \G(f) \AND \X(\G(g\AND \ldots)\AND h\AND \ldots) \\ + f\OR \X(\F(f)\OR h\OR \ldots) &\equiv \F(f) \OR \X(h\OR \ldots) \end{align*} The latter rule for $f\OR \X(\F(f)\OR h\ldots)$ is only applied if all $\F$-formulas can be removed from the argument of $\X$ with the @@ -1685,9 +1685,9 @@ $q,\,q_i$ & a pure eventuality that is also purely universal \\ \begin{align*} \G(f_1\AND\ldots\AND f_n \AND \X e_1 \AND \ldots \AND \X e_p)&\equiv \G(f_1\AND\ldots\AND f_n \AND e_1 \AND \ldots \AND e_p) \\ - \G(f_1\AND\ldots\AND f_n \AND \F (g_1 \AND \ldots \AND g_p \AND \X e_1 \AND \X e_m))&\equiv \G(f_1\AND\ldots\AND f_n \AND \F(g_1 \AND \ldots \AND g_p) \AND e_1 \AND \ldots \AND e_m) \\ - \F(f_1\OR\ldots\OR f_n \OR \X u_1 \OR \ldots \OR \X u_p)&\equiv \F(f_1\OR\ldots\OR f_n \OR u_1 \OR \ldots \AND u_p) \\ - \F(f_1\OR\ldots\OR f_n \OR \G (g_1 \OR \ldots \OR g_p \OR \X u_1 \OR \X u_m))&\equiv \F(f_1\OR\ldots\AND f_n \OR \G(g_1 \OR \ldots \OR g_p) \OR u_1 \OR \ldots \OR u_m) \\ + \G(f_1\AND\ldots\AND f_n \AND \F (g_1 \AND \ldots \AND g_p \AND \X e_1 \AND \ldots \AND \X e_m))&\equiv \G(f_1\AND\ldots\AND f_n \AND \F(g_1 \AND \ldots \AND g_p) \AND e_1 \AND \ldots \AND e_m) \\ + \F(f_1\OR\ldots\OR f_n \OR \X u_1 \OR \ldots \OR \X u_p)&\equiv \F(f_1\OR\ldots\OR f_n \OR u_1 \OR \ldots \OR u_p) \\ + \F(f_1\OR\ldots\OR f_n \OR \G (g_1 \OR \ldots \OR g_p \OR \X u_1 \OR \ldots \OR \X u_m))&\equiv \F(f_1\OR\ldots\AND f_n \OR \G(g_1 \OR \ldots \OR g_p) \OR u_1 \OR \ldots \OR u_m) \\ \G(f_1\OR\ldots\OR f_n \OR q_1 \OR \ldots \OR q_p)&\equiv \G(f_1\OR\ldots\OR f_n)\OR q_1 \OR \ldots \OR q_p \\ \F(f_1\AND\ldots\AND f_n \AND q_1 \AND \ldots \AND q_p)&\equivEU \F(f_1\AND\ldots\AND f_n)\AND q_1 \AND \ldots \AND q_p \\ \G(f_1\AND\ldots\AND f_n \AND q_1 \AND \ldots \AND q_p)&\equivEU \G(f_1\AND\ldots\AND f_n)\AND q_1 \AND \ldots \AND q_p \\