From 4629d074ab0b1374c9c055b8b1285a8e371fd843 Mon Sep 17 00:00:00 2001 From: Alexandre Duret-Lutz Date: Wed, 7 Dec 2022 11:26:51 +0100 Subject: [PATCH] Fix semantics of [*i..j] and [:*i..j] * doc/tl/tl.tex: After a discussion with Antoin, it appears that the semantics previously given for f[*0..j] was not considering that f[*0] should accept any sequence of one letter. --- doc/tl/tl.tex | 24 +++++++++--------------- 1 file changed, 9 insertions(+), 15 deletions(-) diff --git a/doc/tl/tl.tex b/doc/tl/tl.tex index 62a35635f..f9205cced 100644 --- a/doc/tl/tl.tex +++ b/doc/tl/tl.tex @@ -668,20 +668,17 @@ $a$ is an atomic proposition. \sigma\VDash f\FUSION g&\iff \exists k\in\N,\,(\sigma^{0..k} \VDash f)\land(\sigma^{k..} \VDash g)\\ \sigma\VDash f\STAR{\mvar{i}..\mvar{j}}& \iff \begin{cases} - \text{either} & \mvar{i}=0 \land \sigma=\varepsilon \\ - \text{or} & \mvar{i}=0 \land \mvar{j}>0 \land (\exists k\in\N,\, - (\sigma^{0..k-1}\VDash f) \land (\sigma^{k..} - \VDash f\STAR{\mvar{0}..\mvar{j-1}}))\\ + \text{either} & \mvar{i}=0 \land\mvar{j}=0\land \sigma=\varepsilon \\ + \text{or} & \mvar{i}=0 \land \mvar{j}>0 \land \bigl((\sigma = \varepsilon) \lor (\sigma + \VDash f\STAR{\mvar{1}..\mvar{j}})\bigr)\\ \text{or} & \mvar{i}>0 \land \mvar{j}>0 \land (\exists k\in\N,\, (\sigma^{0..k-1}\VDash f) \land (\sigma^{k..} \VDash f\STAR{\mvar{i-1}..\mvar{j-1}}))\\ \end{cases}\\ \sigma\VDash f\STAR{\mvar{i}..} & \iff \begin{cases} - \text{either} & \mvar{i}=0 \land \sigma=\varepsilon \\ - \text{or} & \mvar{i}=0 \land (\exists k\in\N,\, - (\sigma^{0..k-1}\VDash f) \land (\sigma^{k..} - \VDash f\STAR{\mvar{0}..}))\\ + \text{either} & \mvar{i}=0 \land \bigl((\sigma=\varepsilon)\lor(\sigma + \VDash f\STAR{\mvar{1}..})\bigr)\\ \text{or} & \mvar{i}>0 \land (\exists k\in\N,\, (\sigma^{0..k-1}\VDash f) \land (\sigma^{k..} \VDash f\STAR{\mvar{i-1}..}))\\ @@ -689,19 +686,16 @@ $a$ is an atomic proposition. \sigma\VDash f\FSTAR{\mvar{i}..\mvar{j}}& \iff \begin{cases} \text{either} & \mvar{i}=0 \land \mvar{j}=0 \land \sigma\VDash\1 \\ - \text{or} & \mvar{i}=0 \land \mvar{j}>0 \land (\exists k\in\N,\, - (\sigma^{0..k}\VDash f) \land (\sigma^{k..} - \VDash f\FSTAR{\mvar{0}..\mvar{j-1}}))\\ + \text{or} & \mvar{i}=0 \land \mvar{j}>0 \land \bigl((\sigma\VDash\1)\lor(\sigma + \VDash f\FSTAR{\mvar{1}..\mvar{j}})\bigr)\\ \text{or} & \mvar{i}>0 \land \mvar{j}>0 \land (\exists k\in\N,\, (\sigma^{0..k}\VDash f) \land (\sigma^{k..} \VDash f\FSTAR{\mvar{i-1}..\mvar{j-1}}))\\ \end{cases}\\ \sigma\VDash f\FSTAR{\mvar{i}..} & \iff \begin{cases} - \text{either} & \mvar{i}=0 \land \sigma\VDash\1 \\ - \text{or} & \mvar{i}=0 \land (\exists k\in\N,\, - (\sigma^{0..k}\VDash f) \land (\sigma^{k..} - \VDash f\FSTAR{\mvar{0}..}))\\ + \text{either} & \mvar{i}=0 \land \bigl((\sigma\VDash\1) + \lor(\sigma \VDash f\FSTAR{\mvar{1}..})\bigr)\\ \text{or} & \mvar{i}>0 \land (\exists k\in\N,\, (\sigma^{0..k}\VDash f) \land (\sigma^{k..} \VDash f\FSTAR{\mvar{i-1}..}))\\