// -*- coding: utf-8 -*- // Copyright (C) 2011, 2013, 2014 Laboratoire de Recherche et // Developpement de l'Epita (LRDE). // Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . /// FIXME: Add /// - a bit-state hashing version. //#define TRACE #include #ifdef TRACE #define trace std::cerr #else #define trace while (0) std::cerr #endif #include #include #include "misc/hash.hh" #include "tgba/tgba.hh" #include "emptiness.hh" #include "emptiness_stats.hh" #include "tau03.hh" #include "ndfs_result.hxx" namespace spot { namespace { enum color {WHITE, BLUE}; /// \brief Emptiness checker on spot::tgba automata having at most one /// acceptance condition (i.e. a TBA). template class tau03_search : public emptiness_check, public ec_statistics { public: /// \brief Initialize the search algorithm on the automaton \a a tau03_search(const tgba *a, size_t size, option_map o) : emptiness_check(a, o), h(size), all_cond(a->all_acceptance_conditions()) { assert(a->number_of_acceptance_conditions() > 0); } virtual ~tau03_search() { // Release all iterators on the stacks. while (!st_blue.empty()) { h.pop_notify(st_blue.front().s); a_->release_iter(st_blue.front().it); st_blue.pop_front(); } while (!st_red.empty()) { h.pop_notify(st_red.front().s); a_->release_iter(st_red.front().it); st_red.pop_front(); } } /// \brief Perform a Magic Search. /// /// \return non null pointer iff the algorithm has found an /// accepting path. virtual emptiness_check_result* check() { if (!st_blue.empty()) return 0; assert(st_red.empty()); const state* s0 = a_->get_init_state(); inc_states(); h.add_new_state(s0, BLUE); push(st_blue, s0, bddfalse, bddfalse); if (dfs_blue()) return new ndfs_result, heap>(*this); return 0; } virtual std::ostream& print_stats(std::ostream &os) const { os << states() << " distinct nodes visited" << std::endl; os << transitions() << " transitions explored" << std::endl; os << max_depth() << " nodes for the maximal stack depth" << std::endl; return os; } const heap& get_heap() const { return h; } const stack_type& get_st_blue() const { return st_blue; } const stack_type& get_st_red() const { return st_red; } private: void push(stack_type& st, const state* s, const bdd& label, const bdd& acc) { inc_depth(); tgba_succ_iterator* i = a_->succ_iter(s); i->first(); st.push_front(stack_item(s, i, label, acc)); } void pop(stack_type& st) { dec_depth(); a_->release_iter(st.front().it); st.pop_front(); } /// \brief Stack of the blue dfs. stack_type st_blue; /// \brief Stack of the red dfs. stack_type st_red; /// \brief Map where each visited state is colored /// by the last dfs visiting it. heap h; /// The unique acceptance condition of the automaton \a a. bdd all_cond; bool dfs_blue() { while (!st_blue.empty()) { stack_item& f = st_blue.front(); trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c_prime = h.get_color_ref(s_prime); if (c_prime.is_white()) { trace << " It is white, go down" << std::endl; inc_states(); h.add_new_state(s_prime, BLUE); push(st_blue, s_prime, label, acc); } else { trace << " It is blue, pop it" << std::endl; h.pop_notify(s_prime); } } else // Backtrack the edge // (predecessor of f.s in st_blue, , f.s) { trace << " All the successors have been visited" << ", rescan this successors" << std::endl; typename heap::color_ref c = h.get_color_ref(f.s); assert(!c.is_white()); for (auto i: a_->succ(f.s)) { inc_transitions(); const state *s_prime = i->current_state(); trace << "DFS_BLUE rescanning the arc from " << a_->format_state(f.s) << " to " << a_->format_state(s_prime) << std::endl; bdd label = i->current_condition(); bdd acc = i->current_acceptance_conditions(); typename heap::color_ref c_prime = h.get_color_ref(s_prime); assert(!c_prime.is_white()); bdd acu = acc | c.get_acc(); if ((c_prime.get_acc() & acu) != acu) { trace << " a propagation is needed, go down" << std::endl; c_prime.cumulate_acc(acu); push(st_red, s_prime, label, acc); dfs_red(acu); } } if (c.get_acc() == all_cond) { trace << "DFS_BLUE propagation is successful, report a" << " cycle" << std::endl; return true; } else { trace << "DFS_BLUE propagation is unsuccessful, pop it" << std::endl; h.pop_notify(f.s); pop(st_blue); } } } return false; } void dfs_red(const bdd& acu) { assert(!st_red.empty()); while (!st_red.empty()) { stack_item& f = st_red.front(); trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c_prime = h.get_color_ref(s_prime); if (c_prime.is_white()) { trace << " It is white, pop it" << std::endl; s_prime->destroy(); } else if ((c_prime.get_acc() & acu) != acu) { trace << " It is blue and propagation " << "is needed, go down" << std::endl; c_prime.cumulate_acc(acu); push(st_red, s_prime, label, acc); } else { trace << " It is blue and no propagation " << "is needed, pop it" << std::endl; h.pop_notify(s_prime); } } else // Backtrack { trace << " All the successors have been visited, pop it" << std::endl; h.pop_notify(f.s); pop(st_red); } } } }; class explicit_tau03_search_heap { public: class color_ref { public: color_ref(color* c, bdd* a) :p(c), acc(a) { } color get_color() const { return *p; } void set_color(color c) { assert(!is_white()); *p = c; } const bdd& get_acc() const { assert(!is_white()); return *acc; } void cumulate_acc(const bdd& a) { assert(!is_white()); *acc |= a; } bool is_white() const { return p == 0; } private: color *p; bdd* acc; }; explicit_tau03_search_heap(size_t) { } ~explicit_tau03_search_heap() { hash_type::const_iterator s = h.begin(); while (s != h.end()) { // Advance the iterator before deleting the "key" pointer. const state* ptr = s->first; ++s; ptr->destroy(); } } color_ref get_color_ref(const state*& s) { hash_type::iterator it = h.find(s); if (it == h.end()) return color_ref(0, 0); if (s != it->first) { s->destroy(); s = it->first; } return color_ref(&it->second.first, &it->second.second); } void add_new_state(const state* s, color c) { assert(h.find(s) == h.end()); h.insert(std::make_pair(s, std::make_pair(c, bddfalse))); } void pop_notify(const state*) const { } bool has_been_visited(const state* s) const { hash_type::const_iterator it = h.find(s); return (it != h.end()); } enum { Has_Size = 1 }; int size() const { return h.size(); } private: typedef std::unordered_map, state_ptr_hash, state_ptr_equal> hash_type; hash_type h; }; } // anonymous emptiness_check* explicit_tau03_search(const tgba *a, option_map o) { return new tau03_search(a, 0, o); } }