// Copyright (C) 2008, 2009 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. #include "ltlast/visitor.hh" #include "ltlast/allnodes.hh" #include "ltlast/formula_tree.hh" #include "ltlvisit/lunabbrev.hh" #include "ltlvisit/nenoform.hh" #include "tgba/tgbabddconcretefactory.hh" #include #include "eltl2tgba_lacim.hh" namespace spot { namespace { using namespace ltl; /// \brief Recursively translate a formula into a BDD. class eltl_trad_visitor : public const_visitor { public: eltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false) : fact_(fact), root_(root), finish_() { } virtual ~eltl_trad_visitor() { } bdd result() { return res_; } void visit(const atomic_prop* node) { res_ = bdd_ithvar(fact_.create_atomic_prop(node)); } void visit(const constant* node) { switch (node->val()) { case constant::True: res_ = bddtrue; return; case constant::False: res_ = bddfalse; return; } /* Unreachable code. */ assert(0); } void visit(const unop* node) { switch (node->op()) { case unop::Not: { res_ = bdd_not(recurse(node->child())); return; } case unop::Finish: { // Ensure finish_[node->child()] has been computed if // node->child() is an automaton operator. res_ = recurse(node->child()); finish_map_::const_iterator it = finish_.find(node->child()); if (it != finish_.end()) res_ = finish_[node->child()]; return; } case unop::X: case unop::F: case unop::G: assert(!"unsupported operator"); } /* Unreachable code. */ assert(0); } void visit(const binop* node) { bdd f1 = recurse(node->first()); bdd f2 = recurse(node->second()); switch (node->op()) { case binop::Xor: res_ = bdd_apply(f1, f2, bddop_xor); return; case binop::Implies: res_ = bdd_apply(f1, f2, bddop_imp); return; case binop::Equiv: res_ = bdd_apply(f1, f2, bddop_biimp); return; case binop::U: case binop::R: assert(!"unsupported operator"); } /* Unreachable code. */ assert(0); } void visit(const multop* node) { int op = -1; bool root = false; switch (node->op()) { case multop::And: op = bddop_and; res_ = bddtrue; // When the root formula is a conjunction it's ok to // consider all children as root formulae. This allows the // root-G trick to save many more variable. (See the // translation of G.) root = root_; break; case multop::Or: op = bddop_or; res_ = bddfalse; break; } assert(op != -1); unsigned s = node->size(); for (unsigned n = 0; n < s; ++n) res_ = bdd_apply(res_, recurse(node->nth(n), root), op); } void visit(const automatop* node) { nmap m; bdd finish = bddfalse; bdd acc = bddtrue; std::vector v; for (unsigned i = 0; i < node->size(); ++i) v.push_back(const_cast(node->nth(i))); std::pair vp = recurse_state(node->get_nfa(), node->get_nfa()->get_init_state(), v, m, acc, finish); // Update finish_ with finish(node). // FIXME: when node is loop, it does not make sense; hence the bddtrue. finish_[node] = !node->get_nfa()->is_loop() ? bddtrue : finish; bdd tmp = bddtrue; for (nmap::iterator it = m.begin(); it != m.end(); ++it) tmp &= bdd_apply(bdd_ithvar(it->second.first + 1), bdd_ithvar(it->second.second + 1), bddop_biimp); fact_.constrain_relation(bdd_apply(acc, tmp, bddop_imp)); fact_.declare_acceptance_condition(acc, node); res_ = node->is_negated() ? bdd_nithvar(vp.first) : bdd_ithvar(vp.first); } bdd recurse(const formula* f, bool root = false) { eltl_trad_visitor v(fact_, root); f->accept(v); return v.result(); } private: bdd res_; tgba_bdd_concrete_factory& fact_; bool root_; /// BDD associated to each automatop A representing finish(A). typedef Sgi::hash_map finish_map_; finish_map_ finish_; // Table containing the two now variables associated with each state. // TODO: a little documentation about that. typedef Sgi::hash_map< const nfa::state*, std::pair, ptr_hash > nmap; std::pair& recurse_state(const nfa::ptr& nfa, const nfa::state* s, const std::vector& v, nmap& m, bdd& acc, bdd& finish) { bool is_loop = nfa->is_loop(); nmap::iterator it; it = m.find(s); int v1 = 0; int v2 = 0; if (it != m.end()) return it->second; else { v1 = fact_.create_anonymous_state(); v2 = fact_.create_anonymous_state(); m[s] = std::make_pair(v1, v2); } bdd tmp1 = bddfalse; bdd tmp2 = bddfalse; bdd tmpacc = bddfalse; for (nfa::iterator i = nfa->begin(s); i != nfa->end(s); ++i) { const formula* lbl = formula_tree::instanciate((*i)->lbl, v); bdd f = recurse(lbl); lbl->destroy(); if (nfa->is_final((*i)->dst)) { tmp1 |= f; tmp2 |= f; tmpacc |= f; finish |= bdd_ithvar(v1) & f; } else { std::pair vp = recurse_state(nfa, (*i)->dst, v, m, acc, finish); tmp1 |= (f & bdd_ithvar(vp.first + 1)); tmp2 |= (f & bdd_ithvar(vp.second + 1)); if (is_loop) tmpacc |= f; } } fact_.constrain_relation(bdd_apply(bdd_ithvar(v1), tmp1, bddop_biimp)); if (is_loop) { acc &= bdd_ithvar(v2) | !tmpacc; fact_.constrain_relation( bdd_apply(bdd_ithvar(v2), tmp2, bddop_invimp)); } else { acc &= bdd_nithvar(v2) | tmpacc; fact_.constrain_relation(bdd_apply(bdd_ithvar(v2), tmp2, bddop_imp)); } return m[s]; } }; } // anonymous tgba_bdd_concrete* eltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict) { // Normalize the formula. We want all the negations on // the atomic propositions. We also suppress logic // abbreviations such as <=>, =>, or XOR, since they // would involve negations at the BDD level. const ltl::formula* f1 = ltl::unabbreviate_logic(f); const ltl::formula* f2 = ltl::negative_normal_form(f1); f1->destroy(); // Traverse the formula and draft the automaton in a factory. tgba_bdd_concrete_factory fact(dict); eltl_trad_visitor v(fact, true); f2->accept(v); f2->destroy(); fact.finish(); // Finally setup the resulting automaton. return new tgba_bdd_concrete(fact, v.result()); } }