// Copyright (C) 2004, 2006 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. #ifndef SPOT_LTLVISIT_REDUCE_HH # define SPOT_LTLVISIT_REDUCE_HH #include "ltlast/formula.hh" #include "ltlast/visitor.hh" namespace spot { namespace ltl { /// \addtogroup ltl_rewriting /// @{ /// Options for spot::ltl::reduce. enum reduce_options { /// No reduction. Reduce_None = 0, /// Basic reductions. Reduce_Basics = 1, /// Somenzi & Bloem syntactic implication. Reduce_Syntactic_Implications = 2, /// Etessami & Holzmann eventuality and universality reductions. Reduce_Eventuality_And_Universality = 4, /// Tauriainen containment checks. Reduce_Containment_Checks = 8, /// Tauriainen containment checks (stronger version). Reduce_Containment_Checks_Stronger = 16, /// All reductions. Reduce_All = -1U }; /// \brief Reduce a formula \a f. /// /// \param f the formula to reduce /// \param opt a conjonction of spot::ltl::reduce_options specifying /// which optimizations to apply. /// \return the reduced formula formula* reduce(const formula* f, int opt = Reduce_All); /// @} /// \brief Check whether a formula is a pure eventuality. /// \ingroup ltl_misc /// /// Pure eventuality formulae are defined in /// \verbatim /// @InProceedings{ etessami.00.concur, /// author = {Kousha Etessami and Gerard J. Holzmann}, /// title = {Optimizing {B\"u}chi Automata}, /// booktitle = {Proceedings of the 11th International Conference on /// Concurrency Theory (Concur'2000)}, /// pages = {153--167}, /// year = {2000}, /// editor = {C. Palamidessi}, /// volume = {1877}, /// series = {Lecture Notes in Computer Science}, /// publisher = {Springer-Verlag} /// } /// \endverbatim /// /// A word that satisfies a pure eventuality can be prefixed by /// anything and still satisfies the formula. bool is_eventual(const formula* f); /// \brief Check whether a formula is purely universal. /// \ingroup ltl_misc /// /// Purely universal formulae are defined in /// \verbatim /// @InProceedings{ etessami.00.concur, /// author = {Kousha Etessami and Gerard J. Holzmann}, /// title = {Optimizing {B\"u}chi Automata}, /// booktitle = {Proceedings of the 11th International Conference on /// Concurrency Theory (Concur'2000)}, /// pages = {153--167}, /// year = {2000}, /// editor = {C. Palamidessi}, /// volume = {1877}, /// series = {Lecture Notes in Computer Science}, /// publisher = {Springer-Verlag} /// } /// \endverbatim /// /// Any (non-empty) suffix of a word that satisfies if purely /// universal formula also satisfies the formula. bool is_universal(const formula* f); } } #endif // SPOT_LTLVISIT_REDUCE_HH