# -*- coding: utf-8 -*- #+TITLE: =genltl= #+DESCRIPTION: Spot command-line tool that generates LTL formulas from known patterns #+SETUPFILE: setup.org #+HTML_LINK_UP: tools.html This tool outputs LTL formulas that either comes from named lists of formulas, or from scalable patterns. These patterns are usually taken from the literature (see the [[./man/genltl.1.html][=genltl=]](1) man page for references). Sometimes the same pattern is given different names in different papers, so we alias different option names to the same pattern. #+BEGIN_SRC sh :results verbatim :exports results genltl --help | sed -n '/Pattern selection:/,/^$/p' | sed '1d;$d' #+END_SRC #+RESULTS: #+begin_example --and-f=RANGE, --gh-e=RANGE F(p1)&F(p2)&...&F(pn) --and-fg=RANGE FG(p1)&FG(p2)&...&FG(pn) --and-gf=RANGE, --ccj-phi=RANGE, --gh-c2=RANGE GF(p1)&GF(p2)&...&GF(pn) --ccj-alpha=RANGE F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn)))) --ccj-beta=RANGE F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q)))) --ccj-beta-prime=RANGE F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q))) --dac-patterns[=RANGE] Dwyer et al. [FMSP'98] Spec. Patterns for LTL (range should be included in 1..45) --eh-patterns[=RANGE] Etessami and Holzmann [Concur'00] patterns (range should be included in 1..12) --gh-q=RANGE (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1})) --gh-r=RANGE (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1})) --go-theta=RANGE !((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r))) --or-fg=RANGE, --ccj-xi=RANGE FG(p1)|FG(p2)|...|FG(pn) --or-g=RANGE, --gh-s=RANGE G(p1)|G(p2)|...|G(pn) --or-gf=RANGE, --gh-c1=RANGE GF(p1)|GF(p2)|...|GF(pn) --r-left=RANGE (((p1 R p2) R p3) ... R pn) --r-right=RANGE (p1 R (p2 R (... R pn))) --rv-counter=RANGE n-bit counter --rv-counter-carry=RANGE n-bit counter w/ carry --rv-counter-carry-linear=RANGE n-bit counter w/ carry (linear size) --rv-counter-linear=RANGE n-bit counter (linear size) --sb-patterns[=RANGE] Somenzi and Bloem [CAV'00] patterns (range should be included in 1..27) --u-left=RANGE, --gh-u=RANGE (((p1 U p2) U p3) ... U pn) --u-right=RANGE, --gh-u2=RANGE, --go-phi=RANGE (p1 U (p2 U (... U pn))) #+end_example An example is probably all it takes to understand how this tool works: #+BEGIN_SRC sh :results verbatim :exports both genltl --and-gf=1..5 --u-left=1..5 #+END_SRC #+RESULTS: #+begin_example GFp1 GFp1 & GFp2 GFp1 & GFp2 & GFp3 GFp1 & GFp2 & GFp3 & GFp4 GFp1 & GFp2 & GFp3 & GFp4 & GFp5 p1 p1 U p2 (p1 U p2) U p3 ((p1 U p2) U p3) U p4 (((p1 U p2) U p3) U p4) U p5 #+end_example =genltl= supports the [[file:ioltl.org][common option for output of LTL formulas]], so you may output these pattern for various tools. For instance here is the same formulas, but formatted in a way that is suitable for being included in a LaTeX table. #+BEGIN_SRC sh :results verbatim :exports both genltl --and-gf=1..5 --u-left=1..5 --latex --format='%F & %L & $%f$ \\' #+END_SRC #+RESULTS: #+begin_example and-gf & 1 & $\G \F p_{1}$ \\ and-gf & 2 & $\G \F p_{1} \land \G \F p_{2}$ \\ and-gf & 3 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3}$ \\ and-gf & 4 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3} \land \G \F p_{4}$ \\ and-gf & 5 & $\G \F p_{1} \land \G \F p_{2} \land \G \F p_{3} \land \G \F p_{4} \land \G \F p_{5}$ \\ u-left & 1 & $p_{1}$ \\ u-left & 2 & $p_{1} \U p_{2}$ \\ u-left & 3 & $(p_{1} \U p_{2}) \U p_{3}$ \\ u-left & 4 & $((p_{1} \U p_{2}) \U p_{3}) \U p_{4}$ \\ u-left & 5 & $(((p_{1} \U p_{2}) \U p_{3}) \U p_{4}) \U p_{5}$ \\ #+end_example Note that for the =--lbt= syntax, each formula is relabeled using =p0=, =p1=, ... before it is output, when the pattern (like =--ccj-alpha=) use different names. Compare: #+BEGIN_SRC sh :results verbatim :exports both genltl --ccj-alpha=3 #+END_SRC #+RESULTS: : F(F(Fq3 & q2) & q1) & F(F(Fp3 & p2) & p1) with #+BEGIN_SRC sh :results verbatim :exports both genltl --ccj-alpha=3 --lbt #+END_SRC #+RESULTS: : & F & p2 F & p1 F p0 F & F & F p3 p4 p5 This is because most tools using =lbt='s syntax require atomic propositions to have the form =pNN=. Three options provide lists of unrelated LTL formulas, taken from the literature (see the [[./man/genltl.1.html][=genltl=]](1) man page for references): =--dac-patterns=, =--eh-patterns=, and =--sb-patterns=. With these options, the range is used to select a subset of the list of formulas. Without range, all formulas are used. Here is the complete list: #+BEGIN_SRC sh :results verbatim :exports both genltl --dac --eh --sb --format=%F,%L,%f #+END_SRC #+RESULTS: #+begin_example dac-patterns,1,G!p0 dac-patterns,2,Fp0 -> (!p1 U p0) dac-patterns,3,G(p0 -> G!p1) dac-patterns,4,G((p0 & !p1 & Fp1) -> (!p2 U p1)) dac-patterns,5,G((p0 & !p1) -> (!p2 W p1)) dac-patterns,6,Fp0 dac-patterns,7,!p0 W (!p0 & p1) dac-patterns,8,G!p0 | F(p0 & Fp1) dac-patterns,9,G((p0 & !p1) -> (!p1 W (!p1 & p2))) dac-patterns,10,G((p0 & !p1) -> (!p1 U (!p1 & p2))) dac-patterns,11,!p0 W (p0 W (!p0 W (p0 W G!p0))) dac-patterns,12,Fp0 -> ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | ((!p0 & !p1) U (p0 | ((!p0 & p1) U (p0 | (!p1 U p0))))))))) dac-patterns,13,Fp0 -> (!p0 U (p0 & (!p1 W (p1 W (!p1 W (p1 W G!p1)))))) dac-patterns,14,G((p0 & Fp1) -> ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | ((!p1 & !p2) U (p1 | ((!p1 & p2) U (p1 | (!p2 U p1)))))))))) dac-patterns,15,G(p0 -> ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | ((!p1 & !p2) U (p2 | ((p1 & !p2) U (p2 | (!p1 W p2) | Gp1))))))))) dac-patterns,16,Gp0 dac-patterns,17,Fp0 -> (p1 U p0) dac-patterns,18,G(p0 -> Gp1) dac-patterns,19,G((p0 & !p1 & Fp1) -> (p2 U p1)) dac-patterns,20,G((p0 & !p1) -> (p2 W p1)) dac-patterns,21,!p0 W p1 dac-patterns,22,Fp0 -> (!p1 U (p0 | p2)) dac-patterns,23,G!p0 | F(p0 & (!p1 W p2)) dac-patterns,24,G((p0 & !p1 & Fp1) -> (!p2 U (p1 | p3))) dac-patterns,25,G((p0 & !p1) -> (!p2 W (p1 | p3))) dac-patterns,26,G(p0 -> Fp1) dac-patterns,27,Fp0 -> ((p1 -> (!p0 U (!p0 & p2))) U p0) dac-patterns,28,G(p0 -> G(p1 -> Fp2)) dac-patterns,29,G((p0 & !p1 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3))) U p1)) dac-patterns,30,G((p0 & !p1) -> ((p2 -> (!p1 U (!p1 & p3))) W p1)) dac-patterns,31,Fp0 -> (!p0 U (!p0 & p1 & X(!p0 U p2))) dac-patterns,32,Fp0 -> (!p1 U (p0 | (!p1 & p2 & X(!p1 U p3)))) dac-patterns,33,G!p0 | (!p0 U ((p0 & Fp1) -> (!p1 U (!p1 & p2 & X(!p1 U p3))))) dac-patterns,34,G((p0 & Fp1) -> (!p2 U (p1 | (!p2 & p3 & X(!p2 U p4))))) dac-patterns,35,G(p0 -> (Fp1 -> (!p1 U (p2 | (!p1 & p3 & X(!p1 U p4)))))) dac-patterns,36,F(p0 & XFp1) -> (!p0 U p2) dac-patterns,37,Fp0 -> (!(!p0 & p1 & X(!p0 U (!p0 & p2))) U (p0 | p3)) dac-patterns,38,G!p0 | (!p0 U (p0 & (F(p1 & XFp2) -> (!p1 U p3)))) dac-patterns,39,G((p0 & Fp1) -> (!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4))) dac-patterns,40,G(p0 -> ((!(!p1 & p2 & X(!p1 U (!p1 & p3))) U (p1 | p4)) | G!(p2 & XFp3))) dac-patterns,41,G((p0 & XFp1) -> XF(p1 & Fp2)) dac-patterns,42,Fp0 -> (((p1 & X(!p0 U p2)) -> X(!p0 U (p2 & Fp3))) U p0) dac-patterns,43,G(p0 -> G((p1 & XFp2) -> X(!p2 U (p2 & Fp3)))) dac-patterns,44,G((p0 & Fp1) -> (((p2 & X(!p1 U p3)) -> X(!p1 U (p3 & Fp4))) U p1)) dac-patterns,45,G(p0 -> (((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4))) U (p2 | G((p1 & X(!p2 U p3)) -> X(!p2 U (p3 & Fp4)))))) dac-patterns,46,G(p0 -> F(p1 & XFp2)) dac-patterns,47,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & X(!p0 U p3)))) U p0) dac-patterns,48,G(p0 -> G(p1 -> (p2 & XFp3))) dac-patterns,49,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & X(!p1 U p4)))) U p1)) dac-patterns,50,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & X(!p2 U p4)))) U (p2 | G(p1 -> (p3 & XFp4))))) dac-patterns,51,G(p0 -> F(p1 & !p2 & X(!p2 U p3))) dac-patterns,52,Fp0 -> ((p1 -> (!p0 U (!p0 & p2 & !p3 & X((!p0 & !p3) U p4)))) U p0) dac-patterns,53,G(p0 -> G(p1 -> (p2 & !p3 & X(!p3 U p4)))) dac-patterns,54,G((p0 & Fp1) -> ((p2 -> (!p1 U (!p1 & p3 & !p4 & X((!p1 & !p4) U p5)))) U p1)) dac-patterns,55,G(p0 -> ((p1 -> (!p2 U (!p2 & p3 & !p4 & X((!p2 & !p4) U p5)))) U (p2 | G(p1 -> (p3 & !p4 & X(!p4 U p5)))))) eh-patterns,1,p0 U (p1 & Gp2) eh-patterns,2,p0 U (p1 & X(p2 U p3)) eh-patterns,3,p0 U (p1 & X(p2 & F(p3 & XF(p4 & XF(p5 & XFp6))))) eh-patterns,4,F(p0 & XGp1) eh-patterns,5,F(p0 & X(p1 & XFp2)) eh-patterns,6,F(p0 & X(p1 U p2)) eh-patterns,7,FGp0 | GFp1 eh-patterns,8,G(p0 -> (p1 U p2)) eh-patterns,9,G(p0 & XF(p1 & XF(p2 & XFp3))) eh-patterns,10,GFp0 & GFp1 & GFp2 & GFp3 & GFp4 eh-patterns,11,(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1)) eh-patterns,12,G(p0 -> (p1 U (Gp2 | Gp3))) sb-patterns,1,p0 U p1 sb-patterns,2,p0 U (p1 U p2) sb-patterns,3,!(p0 U (p1 U p2)) sb-patterns,4,GFp0 -> GFp1 sb-patterns,5,Fp0 U Gp1 sb-patterns,6,Gp0 U p1 sb-patterns,7,!(Fp0 <-> Fp1) sb-patterns,8,!(GFp0 -> GFp1) sb-patterns,9,!(GFp0 <-> GFp1) sb-patterns,10,p0 R (p0 | p1) sb-patterns,11,(Xp0 U Xp1) | !X(p0 U p1) sb-patterns,12,(Xp0 U p1) | !X(p0 U (p0 & p1)) sb-patterns,13,G(p0 -> Fp1) & ((Xp0 U p1) | !X(p0 U (p0 & p1))) sb-patterns,14,G(p0 -> Fp1) & ((Xp0 U Xp1) | !X(p0 U p1)) sb-patterns,15,G(p0 -> Fp1) sb-patterns,16,!G(p0 -> X(p1 R p2)) sb-patterns,17,!(FGp0 | FGp1) sb-patterns,18,G(Fp0 & Fp1) sb-patterns,19,Fp0 & F!p0 sb-patterns,20,(p0 & Xp1) R X(((p2 U p3) R p0) U (p2 R p0)) sb-patterns,21,Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0 sb-patterns,22,Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1)) sb-patterns,23,!(Gp2 | (G(p0 | GFp1) & G(p2 | GF!p1)) | Gp0) sb-patterns,24,!(Gp0 | Gp2 | (G(p0 | FGp1) & G(p2 | FG!p1))) sb-patterns,25,G(p0 | XGp1) & G(p2 | XG!p1) sb-patterns,26,G(p0 | (Xp1 & X!p1)) sb-patterns,27,p0 | (p1 U p0) #+end_example Note that ~--sb-patterns=2 --sb-patterns=4 --sb-patterns=21..22~ also have their complement formula listed as ~--sb-patterns=3 --sb-patterns=8 --sb-patterns=23..24~. So if you build the set of formula output by =genltl --sb-patterns= plus its negation, it will contain only 46 formulas, not 54. #+BEGIN_SRC sh :results verbatim :exports both genltl --sb | ltlfilt --uniq --count (genltl --sb; genltl --sb | ltlfilt --negate) | ltlfilt --uniq --count #+END_SRC #+RESULTS: : 27 : 46 # LocalWords: genltl num toc LTL scalable SRC sed gh pn fg FG gf qn # LocalWords: ccj Xp XXp Xq XXq rv GFp lbt utf SETUPFILE html dac # LocalWords: Dwyer et al FMSP Etessami Holzmann sb Somenzi Bloem # LocalWords: CAV LaTeX Fq Fp pNN Gp XFp XF XGp FGp XG ltlfilt uniq