// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. #include #include #include "misc/hash.hh" #include #include #include #include "magic.hh" namespace spot { namespace { enum color {WHITE, BLUE, RED}; /// \brief Emptiness checker on spot::tgba automata having at most one /// accepting condition (i.e. a TBA). template class magic_search : public emptiness_check { public: /// \brief Initialize the Magic Search algorithm on the automaton \a a /// /// \pre The automaton \a a must have at most one accepting /// condition (i.e. it is a TBA). magic_search(const tgba *a, size_t size) : h(size), a(a), all_cond(a->all_acceptance_conditions()) { assert(a->number_of_acceptance_conditions() <= 1); } virtual ~magic_search() { // Release all iterators on the stacks. while (!st_blue.empty()) { h.pop_notify(st_blue.front().s); delete st_blue.front().it; st_blue.pop_front(); } while (!st_red.empty()) { h.pop_notify(st_red.front().s); delete st_red.front().it; st_red.pop_front(); } } /// \brief Perform a Magic Search. /// /// \return non null pointer iff the algorithm has found a /// new accepting path. /// /// check() can be called several times (until it returns a null /// pointer) to enumerate all the visited accepting paths. The method /// visits only a finite set of accepting paths. virtual emptiness_check_result* check() { nbn = nbt = 0; sts = mdp = st_blue.size() + st_red.size(); if (st_red.empty()) { assert(st_blue.empty()); const state* s0 = a->get_init_state(); ++nbn; h.add_new_state(s0, BLUE); push(st_blue, s0, bddfalse, bddfalse); if (dfs_blue()) return new result(*this); } else { h.pop_notify(st_red.front().s); delete st_red.front().it; st_red.pop_front(); if (!st_red.empty() && dfs_red()) return new result(*this); else if (dfs_blue()) return new result(*this); } return 0; } virtual std::ostream& print_stats(std::ostream &os) const { os << nbn << " distinct nodes visited" << std::endl; os << nbt << " transitions explored" << std::endl; os << mdp << " nodes for the maximal stack depth" << std::endl; if (!st_red.empty()) { assert(!st_blue.empty()); os << st_blue.size() + st_red.size() - 1 << " nodes for the counter example" << std::endl; } return os; } private: /// \brief counters for statistics (number of distinct nodes, of /// transitions and maximal stacks size. int nbn, nbt, mdp, sts; struct stack_item { stack_item(const state* n, tgba_succ_iterator* i, bdd l, bdd a) : s(n), it(i), label(l), acc(a) {}; /// The visited state. const state* s; /// Design the next successor of \a s which has to be visited. tgba_succ_iterator* it; /// The label of the transition followed to reach \a s /// (false for the first one). bdd label; /// The acc set of the transition followed to reach \a s /// (false for the first one). bdd acc; }; typedef std::list stack_type; void push(stack_type& st, const state* s, const bdd& label, const bdd& acc) { ++sts; if (sts>mdp) mdp = sts; tgba_succ_iterator* i = a->succ_iter(s); i->first(); st.push_front(stack_item(s, i, label, acc)); } /// \brief Stack of the blue dfs. stack_type st_blue; /// \brief Stack of the red dfs. stack_type st_red; /// \brief Map where each visited state is colored /// by the last dfs visiting it. heap h; /// State targeted by the red dfs. const state* target; /// The automata to check. const tgba* a; /// The unique accepting condition of the automaton \a a. bdd all_cond; bool dfs_blue() { while (!st_blue.empty()) { stack_item& f = st_blue.front(); if (!f.it->done()) { ++nbt; const state *s_prime = f.it->current_state(); bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); f.it->next(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) // Go down the edge (f.s, , s_prime) { ++nbn; h.add_new_state(s_prime, BLUE); push(st_blue, s_prime, label, acc); } else // Backtrack the edge (f.s, , s_prime) { if (c.get() == BLUE && acc == all_cond) // the test 'c.get() == BLUE' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. { target = f.s; c.set(RED); push(st_red, s_prime, label, acc); if (dfs_red()) return true; } else h.pop_notify(s_prime); } } else // Backtrack the edge // (predecessor of f.s in st_blue, , f.s) { --sts; stack_item f_dest(f); delete f.it; st_blue.pop_front(); typename heap::color_ref c = h.get_color_ref(f_dest.s); assert(!c.is_white()); if (c.get() == BLUE && f_dest.acc == all_cond && !st_blue.empty()) // the test 'c.get() == BLUE' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. { target = st_blue.front().s; c.set(RED); push(st_red, f_dest.s, f_dest.label, f_dest.acc); if (dfs_red()) return true; } else h.pop_notify(f_dest.s); } } return false; } bool dfs_red() { assert(!st_red.empty()); if (target->compare(st_red.front().s) == 0) return true; while (!st_red.empty()) { stack_item& f = st_red.front(); if (!f.it->done()) // Go down { ++nbt; const state *s_prime = f.it->current_state(); bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); f.it->next(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) // Notice that this case is taken into account only to // support successive calls to the check method. Without // this functionnality, one can check assert(c.is_white()). // Go down the edge (f.s, , s_prime) { ++nbn; h.add_new_state(s_prime, RED); push(st_red, s_prime, label, acc); } else // Go down the edge (f.s, , s_prime) { if (c.get() != RED) { c.set(RED); push(st_red, s_prime, label, acc); if (target->compare(s_prime) == 0) return true; } else h.pop_notify(s_prime); } } else // Backtrack { --sts; h.pop_notify(f.s); delete f.it; st_red.pop_front(); } } return false; } class result: public emptiness_check_result { public: result(magic_search& ms) : ms_(ms) { } virtual tgba_run* accepting_run() { assert(!ms_.st_blue.empty()); assert(!ms_.st_red.empty()); tgba_run* run = new tgba_run; typename stack_type::const_reverse_iterator i, j, end; tgba_run::steps* l; l = &run->prefix; i = ms_.st_blue.rbegin(); end = ms_.st_blue.rend(); --end; j = i; ++j; for (; i != end; ++i, ++j) { tgba_run::step s = { i->s->clone(), j->label, j->acc }; l->push_back(s); } l = &run->cycle; j = ms_.st_red.rbegin(); tgba_run::step s = { i->s->clone(), j->label, j->acc }; l->push_back(s); i = j; ++j; end = ms_.st_red.rend(); --end; for (; i != end; ++i, ++j) { tgba_run::step s = { i->s->clone(), j->label, j->acc }; l->push_back(s); } return run; } private: magic_search& ms_; }; }; class explicit_magic_search_heap { public: class color_ref { public: color_ref(color* c) :p(c) { } color get() const { return *p; } void set(color c) { assert(!is_white()); *p=c; } bool is_white() const { return p==0; } private: color *p; }; explicit_magic_search_heap(size_t) { } ~explicit_magic_search_heap() { hash_type::const_iterator s = h.begin(); while (s != h.end()) { // Advance the iterator before deleting the "key" pointer. const state* ptr = s->first; ++s; delete ptr; } } color_ref get_color_ref(const state*& s) { hash_type::iterator it = h.find(s); if (it==h.end()) return color_ref(0); if (s!=it->first) { delete s; s = it->first; } return color_ref(&(it->second)); } void add_new_state(const state* s, color c) { assert(h.find(s)==h.end()); h.insert(std::make_pair(s, c)); } void pop_notify(const state*) { } private: typedef Sgi::hash_map hash_type; hash_type h; }; class bsh_magic_search_heap { public: class color_ref { public: color_ref(unsigned char *b, unsigned char o): base(b), offset(o*2) { } color get() const { return color(((*base) >> offset) & 3U); } void set(color c) { *base = (*base & ~(3U << offset)) | (c << offset); } bool is_white() const { return get()==WHITE; } private: unsigned char *base; unsigned char offset; }; bsh_magic_search_heap(size_t s) { size = s; h = new unsigned char[size]; memset(h, WHITE, size); } ~bsh_magic_search_heap() { delete[] h; } color_ref get_color_ref(const state*& s) { size_t ha = s->hash(); return color_ref(&(h[ha%size]), ha%4); } void add_new_state(const state* s, color c) { color_ref cr(get_color_ref(s)); assert(cr.is_white()); cr.set(c); } void pop_notify(const state* s) { delete s; } private: size_t size; unsigned char* h; }; } // anonymous emptiness_check* explicit_magic_search(const tgba *a) { return new magic_search(a, 0); } emptiness_check* bit_state_hashing_magic_search( const tgba *a, size_t size) { return new magic_search(a, size); } }