// Copyright (C) 2003 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. #include "misc/hash.hh" #include "misc/bddalloc.hh" #include "misc/minato.hh" #include "ltlast/visitor.hh" #include "ltlast/allnodes.hh" #include "ltlvisit/lunabbrev.hh" #include "ltlvisit/nenoform.hh" #include "ltlvisit/destroy.hh" #include "ltlvisit/tostring.hh" #include #include "tgba/tgbabddconcretefactory.hh" #include "ltl2tgba_fm.hh" namespace spot { using namespace ltl; namespace { // Helper dictionary. We represent formula using a BDD to simplify // them, and them translate the BDD back into formulae. // // The name of the variables are inspired from Couvreur's FM paper. // "a" variables are promises (written "a" in the paper) // "next" variables are X's operands (the "r_X" variables from the paper) // "var" variables are atomic propositions. class translate_dict: public bdd_allocator { public: translate_dict() : bdd_allocator(), a_set(bddtrue), var_set(bddtrue), next_set(bddtrue) { } ~translate_dict() { fv_map::iterator i; for (i = a_map.begin(); i != a_map.end(); ++i) ltl::destroy(i->first); for (i = var_map.begin(); i != var_map.end(); ++i) ltl::destroy(i->first); for (i = next_map.begin(); i != next_map.end(); ++i) ltl::destroy(i->first); } /// Formula-to-BDD-variable maps. typedef Sgi::hash_map > fv_map; /// BDD-variable-to-formula maps. typedef Sgi::hash_map vf_map; fv_map a_map; ///< Maps formulae to "a" BDD variables vf_map a_formula_map; ///< Maps "a" BDD variables to formulae fv_map var_map; ///< Maps atomic propisitions to BDD variables vf_map var_formula_map; ///< Maps BDD variables to atomic propisitions fv_map next_map; ///< Maps "Next" variables to BDD variables vf_map next_formula_map; ///< Maps BDD variables to "Next" variables bdd a_set; bdd var_set; bdd next_set; int register_proposition(const ltl::formula* f) { int num; // Do not build a variable that already exists. fv_map::iterator sii = var_map.find(f); if (sii != var_map.end()) { num = sii->second; } else { f = clone(f); num = allocate_variables(1); var_map[f] = num; var_formula_map[num] = f; } var_set &= bdd_ithvar(num); return num; } int register_a_variable(const ltl::formula* f) { int num; // Do not build an accepting variable that already exists. fv_map::iterator sii = a_map.find(f); if (sii != a_map.end()) { num = sii->second; } else { f = clone(f); num = allocate_variables(1); a_map[f] = num; a_formula_map[num] = f; } a_set &= bdd_ithvar(num); return num; } int register_next_variable(const ltl::formula* f) { int num; // Do not build a Next variable that already exists. fv_map::iterator sii = next_map.find(f); if (sii != next_map.end()) { num = sii->second; } else { f = clone(f); num = allocate_variables(1); next_map[f] = num; next_formula_map[num] = f; } next_set &= bdd_ithvar(num); return num; } std::ostream& dump(std::ostream& os) const { fv_map::const_iterator fi; os << "Atomic Propositions:" << std::endl; for (fi = var_map.begin(); fi != var_map.end(); ++fi) { os << " " << fi->second << ": "; to_string(fi->first, os) << std::endl; } os << "a Variables:" << std::endl; for (fi = a_map.begin(); fi != a_map.end(); ++fi) { os << " " << fi->second << ": a["; to_string(fi->first, os) << "]" << std::endl; } os << "Next Variables:" << std::endl; for (fi = next_map.begin(); fi != next_map.end(); ++fi) { os << " " << fi->second << ": Next["; to_string(fi->first, os) << "]" << std::endl; } return os; } ltl::formula* var_to_formula(int var) const { vf_map::const_iterator isi = next_formula_map.find(var); if (isi != next_formula_map.end()) return ltl::clone(isi->second); isi = a_formula_map.find(var); if (isi != a_formula_map.end()) return ltl::clone(isi->second); isi = var_formula_map.find(var); if (isi != var_formula_map.end()) return ltl::clone(isi->second); assert(0); } ltl::formula* conj_bdd_to_formula(bdd b) { if (b == bddfalse) return ltl::constant::false_instance(); ltl::multop::vec* v = new ltl::multop::vec; while (b != bddtrue) { int var = bdd_var(b); ltl::formula* res = var_to_formula(var); bdd high = bdd_high(b); if (high == bddfalse) { res = ltl::unop::instance(ltl::unop::Not, res); b = bdd_low(b); } else { b = high; } assert(b != bddfalse); v->push_back(res); } return ltl::multop::instance(ltl::multop::And, v); } void conj_bdd_to_atomic_props(tgba_explicit* a, bdd b, tgba_explicit::transition* t) { assert(b != bddfalse); while (b != bddtrue) { int var = bdd_var(b); ltl::formula* ap = var_to_formula(var); bdd high = bdd_high(b); if (high == bddfalse) { a->add_neg_condition(t, ap); b = bdd_low(b); } else { a->add_condition(t, ap); b = high; } assert(b != bddfalse); } } void conj_bdd_to_acc(tgba_explicit* a, bdd b, tgba_explicit::transition* t) { assert(b != bddfalse); while (b != bddtrue) { int var = bdd_var(b); bdd high = bdd_high(b); if (high == bddfalse) { // Simply ignore negated accepting variables. b = bdd_low(b); } else { ltl::formula* ac = var_to_formula(var); if (! a->has_accepting_condition(ac)) a->declare_accepting_condition(ltl::clone(ac)); a->add_accepting_condition(t, ac); ltl::atomic_prop::instance_count(); b = high; } assert(b != bddfalse); } } }; // The rewrite rules used here are adapted from Jean-Michel // Couvreur's FM paper. class ltl_trad_visitor: public const_visitor { public: ltl_trad_visitor(translate_dict& dict) : dict_(dict) { } virtual ~ltl_trad_visitor() { } bdd result() const { return res_; } void visit(const atomic_prop* node) { res_ = bdd_ithvar(dict_.register_proposition(node)); } void visit(const constant* node) { switch (node->val()) { case constant::True: res_ = bddtrue; return; case constant::False: res_ = bddfalse; return; } /* Unreachable code. */ assert(0); } void visit(const unop* node) { switch (node->op()) { case unop::F: { // r(Fy) = r(y) + a(y)r(XFy) bdd y = recurse(node->child()); int a = dict_.register_a_variable(node); int x = dict_.register_next_variable(node); res_ = y | (bdd_ithvar(a) & bdd_ithvar(x)); return; } case unop::G: { // r(Gy) = r(y)r(XGy) bdd y = recurse(node->child()); int x = dict_.register_next_variable(node); res_ = y & bdd_ithvar(x); return; } case unop::Not: { res_ = bdd_not(recurse(node->child())); return; } case unop::X: { int x = dict_.register_next_variable(node->child()); res_ = bdd_ithvar(x); return; } } /* Unreachable code. */ assert(0); } void visit(const binop* node) { bdd f1 = recurse(node->first()); bdd f2 = recurse(node->second()); switch (node->op()) { case binop::Xor: res_ = bdd_apply(f1, f2, bddop_xor); return; case binop::Implies: res_ = bdd_apply(f1, f2, bddop_imp); return; case binop::Equiv: res_ = bdd_apply(f1, f2, bddop_biimp); return; case binop::U: { // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2)) int a = dict_.register_a_variable(node->second()); int x = dict_.register_next_variable(node); res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x)); return; } case binop::R: { // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2)) int x = dict_.register_next_variable(node); res_ = (f1 & f2) | (f2 & bdd_ithvar(x)); return; } } /* Unreachable code. */ assert(0); } void visit(const multop* node) { int op = -1; switch (node->op()) { case multop::And: op = bddop_and; res_ = bddtrue; break; case multop::Or: op = bddop_or; res_ = bddfalse; break; } assert(op != -1); unsigned s = node->size(); for (unsigned n = 0; n < s; ++n) { res_ = bdd_apply(res_, recurse(node->nth(n)), op); } } bdd recurse(const formula* f) { ltl_trad_visitor v(dict_); f->accept(v); return v.result(); } private: translate_dict& dict_; bdd res_; }; } tgba_explicit* ltl_to_tgba_fm(const ltl::formula* f, bdd_dict* dict) { // Normalize the formula. We want all the negations on // the atomic propositions. We also suppress logic // abbreviations such as <=>, =>, or XOR, since they // would involve negations at the BDD level. ltl::formula* f1 = ltl::unabbreviate_logic(f); ltl::formula* f2 = ltl::negative_normal_form(f1); ltl::destroy(f1); std::set formulae_seen; std::set formulae_to_translate; formulae_seen.insert(f2); formulae_to_translate.insert(f2); tgba_explicit* a = new tgba_explicit(dict); a->set_init_state(to_string(f2)); while (!formulae_to_translate.empty()) { // Pick one formula. ltl::formula* f = *formulae_to_translate.begin(); formulae_to_translate.erase(formulae_to_translate.begin()); // Translate it into a BDD to simplify it. translate_dict d; ltl_trad_visitor v(d); f->accept(v); bdd res = v.result(); std::string now = to_string(f); minato_isop isop(res); bdd cube; while ((cube = isop.next()) != bddfalse) { ltl::formula* dest = d.conj_bdd_to_formula(bdd_existcomp(cube, d.next_set)); std::string next = to_string(dest); tgba_explicit::transition* t = a->create_transition(now, next); d.conj_bdd_to_atomic_props(a, bdd_existcomp(cube, d.var_set), t); d.conj_bdd_to_acc(a, bdd_existcomp(cube, d.a_set), t); if (formulae_seen.find(dest) == formulae_seen.end()) { formulae_seen.insert(dest); formulae_to_translate.insert(dest); } else { ltl::destroy(dest); } } } // Free all formulae. for (std::set::iterator i = formulae_seen.begin(); i != formulae_seen.end(); ++i) ltl::destroy(*i); // Turn all promises into real accepting conditions. a->complement_all_accepting_conditions(); return a; } }