// -*- coding: utf-8 -*- // Copyright (C) 2012, 2013, 2014 Laboratoire de Recherche et // Développement de l'Epita (LRDE). // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include "common_sys.hh" #include #include #include #include #include #include #include #include #include #include #include "error.h" #include "gethrxtime.h" #include "argmatch.h" #include "common_setup.hh" #include "common_cout.hh" #include "common_finput.hh" #include "neverparse/public.hh" #include "dstarparse/public.hh" #include "ltlast/unop.hh" #include "ltlvisit/tostring.hh" #include "ltlvisit/apcollect.hh" #include "ltlvisit/lbt.hh" #include "ltlvisit/relabel.hh" #include "tgbaalgos/lbtt.hh" #include "tgba/tgbaproduct.hh" #include "tgbaalgos/gtec/gtec.hh" #include "tgbaalgos/randomgraph.hh" #include "tgbaalgos/scc.hh" #include "tgbaalgos/dotty.hh" #include "tgbaalgos/isweakscc.hh" #include "tgbaalgos/reducerun.hh" #include "tgbaalgos/word.hh" #include "tgbaalgos/dtgbacomp.hh" #include "misc/formater.hh" #include "tgbaalgos/stats.hh" #include "tgbaalgos/isdet.hh" #include "misc/escape.hh" #include "misc/hash.hh" #include "misc/random.hh" #include "misc/tmpfile.hh" // Disable handling of timeout on systems that miss kill() or alarm(). // For instance MinGW. #if HAVE_KILL && HAVE_ALARM # define ENABLE_TIMEOUT 1 #else # define ENABLE_TIMEOUT 0 #endif const char argp_program_doc[] ="\ Call several LTL/PSL translators and cross-compare their output to detect \ bugs, or to gather statistics. The list of formulas to use should be \ supplied on standard input, or using the -f or -F options.\v\ Exit status:\n\ 0 everything went fine (timeouts are OK too)\n\ 1 some translator failed to output something we understand, or failed\n\ sanity checks (statistics were output nonetheless)\n\ 2 ltlcross aborted on error\n\ "; #define OPT_STATES 1 #define OPT_DENSITY 2 #define OPT_JSON 3 #define OPT_CSV 4 #define OPT_DUPS 5 #define OPT_NOCHECKS 6 #define OPT_STOP_ERR 7 #define OPT_SEED 8 #define OPT_PRODUCTS 9 #define OPT_COLOR 10 #define OPT_NOCOMP 11 #define OPT_OMIT 12 static const argp_option options[] = { /**************************************************/ { 0, 0, 0, 0, "Specifying translators to call:", 2 }, { "translator", 't', "COMMANDFMT", 0, "register one translator to call", 0 }, { "timeout", 'T', "NUMBER", 0, "kill translators after NUMBER seconds", 0 }, /**************************************************/ { 0, 0, 0, 0, "COMMANDFMT should specify input and output arguments using the " "following character sequences:", 3 }, { "%f,%s,%l,%w", 0, 0, OPTION_DOC | OPTION_NO_USAGE, "the formula as a (quoted) string in Spot, Spin, LBT, or Wring's syntax", 0 }, { "%F,%S,%L,%W", 0, 0, OPTION_DOC | OPTION_NO_USAGE, "the formula as a file in Spot, Spin, LBT, or Wring's syntax", 0 }, { "%N,%T,%D", 0, 0, OPTION_DOC | OPTION_NO_USAGE, "the output automaton as a Never claim, in LBTT's or in LTL2DSTAR's " "format", 0 }, { 0, 0, 0, 0, "If either %l, %L, or %T are used, any input formula that does " "not use LBT-style atomic propositions (i.e. p0, p1, ...) will be " "relabeled automatically.\n" "Furthermore, if COMMANDFMT has the form \"{NAME}CMD\", then only CMD " "will be passed to the shell, and NAME will be used to name the tool " "in the CSV or JSON outputs.", 0 }, /**************************************************/ { 0, 0, 0, 0, "ltlcross behavior:", 4 }, { "allow-dups", OPT_DUPS, 0, 0, "translate duplicate formulas in input", 0 }, { "no-checks", OPT_NOCHECKS, 0, 0, "do not perform any sanity checks (negated formulas " "will not be translated)", 0 }, { "no-complement", OPT_NOCOMP, 0, 0, "do not complement deterministic automata to perform extra checks", 0 }, { "stop-on-error", OPT_STOP_ERR, 0, 0, "stop on first execution error or failure to pass" " sanity checks (timeouts are OK)", 0 }, /**************************************************/ { 0, 0, 0, 0, "State-space generation:", 5 }, { "states", OPT_STATES, "INT", 0, "number of the states in the state-spaces (200 by default)", 0 }, { "density", OPT_DENSITY, "FLOAT", 0, "probability, between 0.0 and 1.0, to add a transition between " "two states (0.1 by default)", 0 }, { "seed", OPT_SEED, "INT", 0, "seed for the random number generator (0 by default)", 0 }, { "products", OPT_PRODUCTS, "[+]INT", 0, "number of products to perform (1 by default), statistics will be " "averaged unless the number is prefixed with '+'", 0 }, /**************************************************/ { 0, 0, 0, 0, "Statistics output:", 6 }, { "json", OPT_JSON, "FILENAME", OPTION_ARG_OPTIONAL, "output statistics as JSON in FILENAME or on standard output", 0 }, { "csv", OPT_CSV, "FILENAME", OPTION_ARG_OPTIONAL, "output statistics as CSV in FILENAME or on standard output", 0 }, { "omit-missing", OPT_OMIT, 0, 0, "do not output statistics for timeouts or failed translations", 0 }, /**************************************************/ { 0, 0, 0, 0, "Miscellaneous options:", -1 }, { "color", OPT_COLOR, "WHEN", OPTION_ARG_OPTIONAL, "colorize output; WHEN can be 'never', 'always' (the default if " "--color is used without argument), or " "'auto' (the default if --color is not used)", 0 }, { 0, 0, 0, 0, 0, 0 } }; const struct argp_child children[] = { { &finput_argp, 0, 0, 1 }, { &misc_argp, 0, 0, -1 }, { 0, 0, 0, 0 } }; enum color_type { color_never, color_always, color_if_tty }; static char const *const color_args[] = { "always", "yes", "force", "never", "no", "none", "auto", "tty", "if-tty", 0 }; static color_type const color_types[] = { color_always, color_always, color_always, color_never, color_never, color_never, color_if_tty, color_if_tty, color_if_tty }; ARGMATCH_VERIFY(color_args, color_types); color_type color_opt = color_if_tty; const char* bright_red = "\033[01;31m"; const char* bright_white = "\033[01;37m"; const char* bright_yellow = "\033[01;33m"; const char* reset_color = "\033[m"; unsigned states = 200; float density = 0.1; unsigned timeout = 0; const char* json_output = 0; const char* csv_output = 0; bool want_stats = false; bool allow_dups = false; bool no_checks = false; bool no_complement = false; bool stop_on_error = false; int seed = 0; unsigned products = 1; bool products_avg = true; bool opt_omit = false; bool has_sr = false; // Has Streett or Rabin automata to process. struct translator_spec { // The translator command, as specified on the command-line. // If this has the form of // {name}cmd // then it is split in two components. // Otherwise, spec=cmd=name. const char* spec; // actual shell command (or spec) const char* cmd; // name of the translator (or spec) const char* name; translator_spec(const char* spec) : spec(spec), cmd(spec), name(spec) { if (*cmd != '{') return; // Match the closing '}' const char* pos = cmd; unsigned count = 1; while (*++pos) { if (*pos == '{') ++count; else if (*pos == '}') if (!--count) { name = strndup(cmd + 1, pos - cmd - 1); cmd = pos + 1; while (*cmd == ' ' || *cmd == '\t') ++cmd; break; } } } translator_spec(const translator_spec& other) : spec(other.spec), cmd(other.cmd), name(other.name) { if (name != spec) name = strdup(name); } ~translator_spec() { if (name != spec) free(const_cast(name)); } }; std::vector translators; bool global_error_flag = false; static std::ostream& global_error() { global_error_flag = true; if (color_opt) std::cerr << bright_red; return std::cerr; } static std::ostream& example() { if (color_opt) std::cerr << bright_yellow; return std::cerr; } static void end_error() { if (color_opt) std::cerr << reset_color; } struct statistics { statistics() : ok(false), has_in(false), status_str(0), status_code(0), time(0), in_type(0), in_states(0), in_edges(0), in_transitions(0), in_acc(0), in_scc(0), states(0), edges(0), transitions(0), acc(0), scc(0), nonacc_scc(0), terminal_scc(0), weak_scc(0), strong_scc(0), nondetstates(0), nondeterministic(false), terminal_aut(false), weak_aut(false), strong_aut(false) { } // If OK is false, only the status_str, status_code, and time fields // should be valid. bool ok; // has in_* data to display. bool has_in; const char* status_str; int status_code; double time; const char* in_type; unsigned in_states; unsigned in_edges; unsigned in_transitions; unsigned in_acc; unsigned in_scc; unsigned states; unsigned edges; unsigned transitions; unsigned acc; unsigned scc; unsigned nonacc_scc; unsigned terminal_scc; unsigned weak_scc; unsigned strong_scc; unsigned nondetstates; bool nondeterministic; bool terminal_aut; bool weak_aut; bool strong_aut; std::vector product_states; std::vector product_transitions; std::vector product_scc; static void fields(std::ostream& os, bool show_exit, bool show_sr) { if (show_exit) os << "\"exit_status\",\"exit_code\","; os << "\"time\","; if (show_sr) os << ("\"in_type\",\"in_states\",\"in_edges\",\"in_transitions\"," "\"in_acc\",\"in_scc\","); os << ("\"states\"," "\"edges\"," "\"transitions\"," "\"acc\"," "\"scc\"," "\"nonacc_scc\"," "\"terminal_scc\"," "\"weak_scc\"," "\"strong_scc\"," "\"nondet_states\"," "\"nondet_aut\"," "\"terminal_aut\"," "\"weak_aut\"," "\"strong_aut\""); size_t m = products_avg ? 1U : products; for (size_t i = 0; i < m; ++i) os << ",\"product_states\",\"product_transitions\",\"product_scc\""; } void to_csv(std::ostream& os, bool show_exit, bool show_sr, const char* na = "") { if (show_exit) os << '"' << status_str << "\"," << status_code << ','; os << time << ','; if (ok) { if (has_in) os << '"' << in_type << "\"," << in_states << ',' << in_edges << ',' << in_transitions << ',' << in_acc << ',' << in_scc << ','; else if (show_sr) os << na << ',' << na << ',' << na << ',' << na << ',' << na << ',' << na << ','; os << states << ',' << edges << ',' << transitions << ',' << acc << ',' << scc << ',' << nonacc_scc << ',' << terminal_scc << ',' << weak_scc << ',' << strong_scc << ',' << nondetstates << ',' << nondeterministic << ',' << terminal_aut << ',' << weak_aut << ',' << strong_aut; if (!products_avg) { for (size_t i = 0; i < products; ++i) os << ',' << product_states[i] << ',' << product_transitions[i] << ',' << product_scc[i]; } else { double st = 0.0; double tr = 0.0; double sc = 0.0; for (size_t i = 0; i < products; ++i) { st += product_states[i]; tr += product_transitions[i]; sc += product_scc[i]; } os << ',' << (st / products) << ',' << (tr / products) << ',' << (sc / products); } } else { size_t m = products_avg ? 1U : products; m *= 3; m += 13 + show_sr * 6; os << na; for (size_t i = 0; i < m; ++i) os << ',' << na; } } }; typedef std::vector statistics_formula; typedef std::vector statistics_vector; statistics_vector vstats; std::vector formulas; static int to_int(const char* s) { char* endptr; int res = strtol(s, &endptr, 10); if (*endptr) error(2, 0, "failed to parse '%s' as an integer.", s); return res; } static int to_pos_int(const char* s) { int res = to_int(s); if (res < 0) error(2, 0, "%d is not positive", res); return res; } static float to_float(const char* s) { char* endptr; // Do not use strtof(), it does not exist on Solaris 9. float res = strtod(s, &endptr); if (*endptr) error(2, 0, "failed to parse '%s' as a float.", s); return res; } static float to_probability(const char* s) { float res = to_float(s); if (res < 0.0 || res > 1.0) error(2, 0, "%f is not between 0 and 1.", res); return res; } static int parse_opt(int key, char* arg, struct argp_state*) { // This switch is alphabetically-ordered. switch (key) { case 't': case ARGP_KEY_ARG: translators.push_back(arg); break; case 'T': timeout = to_pos_int(arg); #if !ENABLE_TIMEOUT std::cerr << "warning: setting a timeout is not supported " << "on your platform" << std::endl; #endif break; case OPT_COLOR: { if (arg) color_opt = XARGMATCH("--color", arg, color_args, color_types); else color_opt = color_always; break; } case OPT_CSV: want_stats = true; csv_output = arg ? arg : "-"; break; case OPT_DENSITY: density = to_probability(arg); break; case OPT_DUPS: allow_dups = true; break; case OPT_JSON: want_stats = true; json_output = arg ? arg : "-"; break; case OPT_PRODUCTS: if (*arg == '+') { products_avg = false; ++arg; } products = to_pos_int(arg); break; case OPT_NOCHECKS: no_checks = true; no_complement = true; break; case OPT_NOCOMP: no_complement = true; break; case OPT_OMIT: opt_omit = true; break; case OPT_SEED: seed = to_pos_int(arg); break; case OPT_STATES: states = to_pos_int(arg); break; case OPT_STOP_ERR: stop_on_error = true; break; default: return ARGP_ERR_UNKNOWN; } return 0; } static volatile bool timed_out = false; unsigned timeout_count = 0; #if ENABLE_TIMEOUT static volatile int alarm_on = 0; static int child_pid = -1; static void sig_handler(int sig) { if (child_pid == 0) error(2, 0, "child received signal %d before starting", sig); if (sig == SIGALRM && alarm_on) { timed_out = true; if (--alarm_on) { // Send SIGTERM to children. kill(-child_pid, SIGTERM); // Try again later if it didn't work. (alarm() will be reset // if it did work and the call to wait() returns) alarm(2); } else { // After a few gentle tries, really kill that child. kill(-child_pid, SIGKILL); } } else { // forward signal kill(-child_pid, sig); // cleanup files spot::cleanup_tmpfiles(); // and die verbosely error(2, 0, "received signal %d", sig); } } static void setup_sig_handler() { struct sigaction sa; sa.sa_handler = sig_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART; // So that wait() doesn't get aborted by SIGALRM. sigaction(SIGALRM, &sa, 0); // Catch termination signals, so we can kill the subprocess. sigaction(SIGHUP, &sa, 0); sigaction(SIGINT, &sa, 0); sigaction(SIGQUIT, &sa, 0); sigaction(SIGTERM, &sa, 0); } static int exec_with_timeout(const char* cmd) { int status; timed_out = false; child_pid = fork(); if (child_pid == -1) error(2, errno, "failed to fork()"); if (child_pid == 0) { setpgid(0, 0); execlp("sh", "sh", "-c", cmd, (char*)0); error(2, errno, "failed to run 'sh'"); // never reached return -1; } else { alarm(timeout); // Upon SIGALRM, the child will receive up to 3 // signals: SIGTERM, SIGTERM, SIGKILL. alarm_on = 3; int w = waitpid(child_pid, &status, 0); alarm_on = 0; if (w == -1) error(2, errno, "error during wait()"); alarm(0); } return status; } #else // !ENABLE_TIMEOUT #define exec_with_timeout(cmd) system(cmd) #define setup_sig_handler() while (0); #endif // !ENABLE_TIMEOUT namespace { struct quoted_string: public spot::printable_value { using spot::printable_value::operator=; void print(std::ostream& os, const char* pos) const { os << '\''; this->spot::printable_value::print(os, pos); os << '\''; } }; struct printable_result_filename: public spot::printable_value { unsigned translator_num; enum output_format { None, Spin, Lbtt, Dstar }; mutable output_format format; printable_result_filename() { val_ = 0; } ~printable_result_filename() { delete val_; } void reset(unsigned n) { translator_num = n; format = None; } void cleanup() { delete val_; val_ = 0; } void print(std::ostream& os, const char* pos) const { output_format old_format = format; if (*pos == 'N') format = Spin; else if (*pos == 'T') format = Lbtt; else if (*pos == 'D') format = Dstar; else SPOT_UNREACHABLE(); if (val_) { // It's OK to use a specified multiple time, but it's not OK // to mix the formats. if (format != old_format) error(2, 0, "you may not mix %%D, %%N, and %%T specifiers: %s", translators[translator_num].spec); } else { char prefix[30]; snprintf(prefix, sizeof prefix, "lcr-o%u-", translator_num); const_cast(this)->val_ = spot::create_tmpfile(prefix); } os << '\'' << val_ << '\''; } }; class translator_runner: protected spot::formater { private: spot::bdd_dict_ptr dict; // Round-specific variables quoted_string string_ltl_spot; quoted_string string_ltl_spin; quoted_string string_ltl_lbt; quoted_string string_ltl_wring; quoted_string filename_ltl_spot; quoted_string filename_ltl_spin; quoted_string filename_ltl_lbt; quoted_string filename_ltl_wring; // Run-specific variables printable_result_filename output; public: using spot::formater::has; translator_runner(spot::bdd_dict_ptr dict) : dict(dict) { declare('f', &string_ltl_spot); declare('s', &string_ltl_spin); declare('l', &string_ltl_lbt); declare('w', &string_ltl_wring); declare('F', &filename_ltl_spot); declare('S', &filename_ltl_spin); declare('L', &filename_ltl_lbt); declare('W', &filename_ltl_wring); declare('D', &output); declare('N', &output); declare('T', &output); size_t s = translators.size(); assert(s); for (size_t n = 0; n < s; ++n) { // Check that each translator uses at least one input and // one output. std::vector has(256); const translator_spec& t = translators[n]; scan(t.cmd, has); if (!(has['f'] || has['s'] || has['l'] || has['w'] || has['F'] || has['S'] || has['L'] || has['W'])) error(2, 0, "no input %%-sequence in '%s'.\n Use " "one of %%f,%%s,%%l,%%w,%%F,%%S,%%L,%%W to indicate how " "to pass the formula.", t.spec); bool has_d = has['D']; if (!(has_d || has['N'] || has['T'])) error(2, 0, "no output %%-sequence in '%s'.\n Use one of " "%%D,%%N,%%T to indicate where the automaton is saved.", t.spec); has_sr |= has_d; // Remember the %-sequences used by all translators. prime(t.cmd); } } void string_to_tmp(std::string& str, unsigned n, std::string& tmpname) { char prefix[30]; snprintf(prefix, sizeof prefix, "lcr-i%u-", n); spot::open_temporary_file* tmpfile = spot::create_open_tmpfile(prefix); tmpname = tmpfile->name(); int fd = tmpfile->fd(); ssize_t s = str.size(); if (write(fd, str.c_str(), s) != s || write(fd, "\n", 1) != 1) error(2, errno, "failed to write into %s", tmpname.c_str()); tmpfile->close(); } const std::string& formula() const { // Pick the most readable format we have... if (!string_ltl_spot.val().empty()) return string_ltl_spot; if (!string_ltl_spin.val().empty()) return string_ltl_spin; if (!string_ltl_wring.val().empty()) return string_ltl_wring; if (!string_ltl_lbt.val().empty()) return string_ltl_lbt; SPOT_UNREACHABLE(); return string_ltl_spot; } void round_formula(const spot::ltl::formula* f, unsigned serial) { if (has('f') || has('F')) string_ltl_spot = spot::ltl::to_string(f, true); if (has('s') || has('S')) string_ltl_spin = spot::ltl::to_spin_string(f, true); if (has('l') || has('L')) string_ltl_lbt = spot::ltl::to_lbt_string(f); if (has('w') || has('W')) string_ltl_wring = spot::ltl::to_wring_string(f); if (has('F')) string_to_tmp(string_ltl_spot, serial, filename_ltl_spot); if (has('S')) string_to_tmp(string_ltl_spin, serial, filename_ltl_spin); if (has('L')) string_to_tmp(string_ltl_lbt, serial, filename_ltl_lbt); if (has('W')) string_to_tmp(string_ltl_wring, serial, filename_ltl_wring); } spot::const_tgba_ptr translate(unsigned int translator_num, char l, statistics_formula* fstats) { output.reset(translator_num); std::ostringstream command; format(command, translators[translator_num].cmd); assert(output.format != printable_result_filename::None); std::string cmd = command.str(); std::cerr << "Running [" << l << translator_num << "]: " << cmd << std::endl; xtime_t before = gethrxtime(); int es = exec_with_timeout(cmd.c_str()); xtime_t after = gethrxtime(); const char* status_str = 0; spot::const_tgba_ptr res = 0; if (timed_out) { // This is not considered to be a global error. std::cerr << "warning: timeout during execution of command\n"; ++timeout_count; status_str = "timeout"; es = -1; } else if (WIFSIGNALED(es)) { status_str = "signal"; es = WTERMSIG(es); global_error() << "error: execution terminated by signal " << es << ".\n"; end_error(); } else if (WIFEXITED(es) && WEXITSTATUS(es) != 0) { es = WEXITSTATUS(es); status_str = "exit code"; global_error() << "error: execution returned exit code " << es << ".\n"; end_error(); } else { status_str = "ok"; es = 0; switch (output.format) { case printable_result_filename::Spin: { spot::neverclaim_parse_error_list pel; std::string filename = output.val()->name(); res = spot::neverclaim_parse(filename, pel, dict); if (!pel.empty()) { status_str = "parse error"; es = -1; std::ostream& err = global_error(); err << "error: failed to parse the produced neverclaim.\n"; spot::format_neverclaim_parse_errors(err, filename, pel); end_error(); res = nullptr; } break; } case printable_result_filename::Lbtt: { std::string error; std::ifstream f(output.val()->name()); if (!f) { status_str = "no output"; es = -1; global_error() << "Cannot open " << output.val() << std::endl; end_error(); } else { res = spot::lbtt_parse(f, error, dict); if (!res) { status_str = "parse error"; es = -1; global_error() << ("error: failed to parse output in " "LBTT format: ") << error << std::endl; end_error(); } } break; } case printable_result_filename::Dstar: { spot::dstar_parse_error_list pel; std::string filename = output.val()->name(); auto aut = spot::dstar_parse(filename, pel, dict); if (!pel.empty()) { status_str = "parse error"; es = -1; std::ostream& err = global_error(); err << "error: failed to parse the produced DSTAR" " output.\n"; spot::format_dstar_parse_errors(err, filename, pel); end_error(); res = nullptr; } else { // Gather statistics about the input automaton if (want_stats) { statistics* st = &(*fstats)[translator_num]; st->has_in = true; switch (aut->type) { case spot::Rabin: st->in_type = "DRA"; break; case spot::Streett: st->in_type = "DSA"; break; } spot::tgba_sub_statistics s = sub_stats_reachable(aut->aut); st->in_states= s.states; st->in_edges = s.transitions; st->in_transitions = s.sub_transitions; st->in_acc = aut->accpair_count; spot::scc_map m(aut->aut); m.build_map(); st->in_scc = m.scc_count(); } // convert it into TGBA for further processing res = dstar_to_tgba(aut); } break; } case printable_result_filename::None: SPOT_UNREACHABLE(); } } if (want_stats) { statistics* st = &(*fstats)[translator_num]; st->status_str = status_str; st->status_code = es; double prec = XTIME_PRECISION; st->time = (after - before) / prec; // Compute statistics. if (res) { st->ok = true; spot::tgba_sub_statistics s = sub_stats_reachable(res); st->states = s.states; st->edges = s.transitions; st->transitions = s.sub_transitions; st->acc = res->number_of_acceptance_conditions(); spot::scc_map m(res); m.build_map(); unsigned c = m.scc_count(); st->scc = c; st->nondetstates = spot::count_nondet_states(res); st->nondeterministic = st->nondetstates != 0; for (unsigned n = 0; n < c; ++n) { if (!m.accepting(n)) ++st->nonacc_scc; else if (is_terminal_scc(m, n)) ++st->terminal_scc; else if (is_weak_scc(m, n)) ++st->weak_scc; else ++st->strong_scc; } if (st->strong_scc) st->strong_aut = true; else if (st->weak_scc) st->weak_aut = true; else st->terminal_aut = true; } } output.cleanup(); return res; } }; static void check_empty_prod(const spot::const_tgba_ptr& aut_i, const spot::const_tgba_ptr& aut_j, size_t i, size_t j, bool icomp, bool jcomp) { auto prod = spot::product(aut_i, aut_j); spot::emptiness_check* ec = spot::couvreur99(prod); spot::emptiness_check_result* res = ec->check(); if (res) { std::ostream& err = global_error(); err << "error: "; if (icomp) err << "Comp(N" << i << ')'; else err << 'P' << i; if (jcomp) err << "*Comp(P" << j << ')'; else err << "*N" << j; err << " is nonempty"; spot::tgba_run* run = res->accepting_run(); if (run) { const spot::tgba_run* runmin = reduce_run(prod, run); delete run; std::cerr << "; both automata accept the infinite word\n" << " "; spot::tgba_word w(runmin); w.simplify(); w.print(example(), prod->get_dict()) << '\n'; delete runmin; } else { std::cerr << '\n'; } end_error(); } delete res; delete ec; } static void cross_check(const std::vector& maps, char l, unsigned p) { size_t m = maps.size(); std::vector res(m); unsigned verified = 0; unsigned violated = 0; for (size_t i = 0; i < m; ++i) if (spot::scc_map* m = maps[i]) { // r == true iff the automaton i is accepting. bool r = false; unsigned c = m->scc_count(); for (unsigned j = 0; (j < c) && !r; ++j) r |= m->accepting(j); res[i] = r; if (r) ++verified; else ++violated; } if (verified != 0 && violated != 0) { std::ostream& err = global_error(); err << "error: {"; bool first = true; for (size_t i = 0; i < m; ++i) if (maps[i] && res[i]) { if (first) first = false; else err << ','; err << l << i; } err << "} disagree with {"; first = true; for (size_t i = 0; i < m; ++i) if (maps[i] && !res[i]) { if (first) first = false; else err << ','; err << l << i; } err << "} when evaluating "; if (products > 1) err << "state-space #" << p << '/' << products << '\n'; else err << "the state-space\n"; end_error(); } } typedef std::set state_set; // Collect all the states of SSPACE that appear in the accepting SCCs // of PROD. static void states_in_acc(const spot::scc_map* m, const spot::const_tgba_ptr& sspace, state_set& s) { auto aut = m->get_aut(); unsigned c = m->scc_count(); for (unsigned n = 0; n < c; ++n) if (m->accepting(n)) for (auto i: m->states_of(n)) { spot::state* x = aut->project_state(i, sspace); assert(x); if (!s.insert(x).second) x->destroy(); } } static bool consistency_check(const spot::scc_map* pos, const spot::scc_map* neg, const spot::const_tgba_ptr& sspace) { // the states of SSPACE should appear in the accepting SCC of at // least one of POS or NEG. Maybe both. state_set s; states_in_acc(pos, sspace, s); states_in_acc(neg, sspace, s); bool res = s.size() == states; for (auto i: s) i->destroy(); return res; } typedef std::unordered_set > fset_t; class processor: public job_processor { spot::bdd_dict_ptr dict = spot::make_bdd_dict(); translator_runner runner; fset_t unique_set; public: processor(): runner(dict) { } ~processor() { fset_t::iterator i = unique_set.begin(); while (i != unique_set.end()) (*i++)->destroy(); } int process_formula(const spot::ltl::formula* f, const char* filename = 0, int linenum = 0) { (void) filename; (void) linenum; static unsigned round = 0; // If we need LBT atomic proposition in any of the input or // output, relabel the formula. if (!f->has_lbt_atomic_props() && (runner.has('l') || runner.has('L') || runner.has('T'))) { const spot::ltl::formula* g = spot::ltl::relabel(f, spot::ltl::Pnn); f->destroy(); f = g; } // ---------- Positive Formula ---------- runner.round_formula(f, round); // Call formula() before printing anything else, in case it // complains. std::string fstr = runner.formula(); if (filename) std::cerr << filename << ':'; if (linenum) std::cerr << linenum << ':'; if (filename || linenum) std::cerr << ' '; if (color_opt) std::cerr << bright_white; std::cerr << fstr << '\n'; if (color_opt) std::cerr << reset_color; // Make sure we do not translate the same formula twice. if (!allow_dups) { if (unique_set.insert(f).second) { f->clone(); } else { std::cerr << ("warning: This formula or its negation has already" " been checked.\n Use --allow-dups if it " "should not be ignored.\n") << std::endl; f->destroy(); return 0; } } // These store the result of the translation of the positive and // negative formulas. size_t m = translators.size(); std::vector pos(m); std::vector neg(m); // These store the complement of the above results, when we can // compute it easily. std::vector comp_pos(m); std::vector comp_neg(m); unsigned n = vstats.size(); vstats.resize(n + (no_checks ? 1 : 2)); statistics_formula* pstats = &vstats[n]; statistics_formula* nstats = 0; pstats->resize(m); formulas.push_back(fstr); for (size_t n = 0; n < m; ++n) { pos[n] = runner.translate(n, 'P', pstats); // If the automaton is deterministic, compute its complement // as well. Note that if we have computed statistics // already, there is no need to call is_deterministic() // again. if (!no_complement && pos[n] && ((want_stats && !(*pstats)[n].nondeterministic) || (!want_stats && is_deterministic(pos[n])))) comp_pos[n] = dtgba_complement(pos[n]); } // ---------- Negative Formula ---------- // The negative formula is only needed when checks are // activated. if (!no_checks) { nstats = &vstats[n + 1]; nstats->resize(m); const spot::ltl::formula* nf = spot::ltl::unop::instance(spot::ltl::unop::Not, f->clone()); if (!allow_dups) { bool res = unique_set.insert(nf->clone()).second; // It is not possible to discover that nf has already been // translated, otherwise that would mean that f had been // translated too and we would have caught it before. assert(res); (void) res; } runner.round_formula(nf, round); formulas.push_back(runner.formula()); for (size_t n = 0; n < m; ++n) { neg[n] = runner.translate(n, 'N', nstats); // If the automaton is deterministic, compute its // complement as well. Note that if we have computed // statistics already, there is no need to call // is_deterministic() again. if (!no_complement && neg[n] && ((want_stats && !(*nstats)[n].nondeterministic) || (!want_stats && is_deterministic(neg[n])))) comp_neg[n] = dtgba_complement(neg[n]); } nf->destroy(); } spot::cleanup_tmpfiles(); ++round; if (!no_checks) { std::cerr << "Performing sanity checks and gathering statistics..." << std::endl; // intersection test for (size_t i = 0; i < m; ++i) if (pos[i]) for (size_t j = 0; j < m; ++j) if (neg[j]) { check_empty_prod(pos[i], neg[j], i, j, false, false); // Deal with the extra complemented automata if we // have some. // If comp_pos[j] and comp_neg[j] exist for the // same j, it means pos[j] and neg[j] were both // deterministic. In that case, we will want to // make sure that comp_pos[j]*comp_neg[j] is empty // to assert the complementary of pos[j] and // neg[j]. However using comp_pos[j] and // comp_neg[j] against other translator will not // give us any more insight than pos[j] and // neg[j]. So we only do intersection checks with // a complement automata when one of the two // translation was not deterministic. if (i != j && comp_pos[j] && !comp_neg[j]) check_empty_prod(pos[i], comp_pos[j], i, j, false, true); if (i != j && comp_neg[i] && !comp_neg[i]) check_empty_prod(comp_neg[i], neg[j], i, j, true, false); if (comp_pos[i] && comp_neg[j] && (i == j || (!comp_neg[i] && !comp_pos[j]))) check_empty_prod(comp_pos[i], comp_neg[j], i, j, true, true); } } else { std::cerr << "Gathering statistics..." << std::endl; } spot::ltl::atomic_prop_set* ap = spot::ltl::atomic_prop_collect(f); f->destroy(); if (want_stats) for (size_t i = 0; i < m; ++i) { (*pstats)[i].product_states.reserve(products); (*pstats)[i].product_transitions.reserve(products); (*pstats)[i].product_scc.reserve(products); if (neg[i]) { (*nstats)[i].product_states.reserve(products); (*nstats)[i].product_transitions.reserve(products); (*nstats)[i].product_scc.reserve(products); } } for (unsigned p = 0; p < products; ++p) { // build a random state-space. spot::srand(seed); auto statespace = spot::random_graph(states, density, ap, dict); // Products of the state space with the positive automata. std::vector pos_prod(m); // Products of the state space with the negative automata. std::vector neg_prod(m); // Associated SCC maps. std::vector pos_map(m); std::vector neg_map(m); for (size_t i = 0; i < m; ++i) if (pos[i]) { auto p = spot::product(pos[i], statespace); pos_prod[i] = p; spot::scc_map* sm = new spot::scc_map(p); sm->build_map(); pos_map[i] = sm; // Statistics if (want_stats) { (*pstats)[i].product_scc.push_back(sm->scc_count()); spot::tgba_statistics s = spot::stats_reachable(p); (*pstats)[i].product_states.push_back(s.states); (*pstats)[i].product_transitions.push_back(s.transitions); } } if (!no_checks) for (size_t i = 0; i < m; ++i) if (neg[i]) { auto p = spot::product(neg[i], statespace); neg_prod[i] = p; spot::scc_map* sm = new spot::scc_map(p); sm->build_map(); neg_map[i] = sm; // Statistics if (want_stats) { (*nstats)[i].product_scc.push_back(sm->scc_count()); spot::tgba_statistics s = spot::stats_reachable(p); (*nstats)[i].product_states.push_back(s.states); (*nstats)[i].product_transitions.push_back(s.transitions); } } if (!no_checks) { // cross-comparison test cross_check(pos_map, 'P', p); cross_check(neg_map, 'N', p); // consistency check for (size_t i = 0; i < m; ++i) if (pos_map[i] && neg_map[i] && !(consistency_check(pos_map[i], neg_map[i], statespace))) { std::ostream& err = global_error(); err << "error: inconsistency between P" << i << " and N" << i; if (products > 1) err << " for state-space #" << p << '/' << products << '\n'; else err << '\n'; end_error(); } } // Cleanup. if (!no_checks) for (size_t i = 0; i < m; ++i) delete neg_map[i]; for (size_t i = 0; i < m; ++i) delete pos_map[i]; ++seed; } std::cerr << std::endl; delete ap; // Shall we stop processing formulas now? abort_run = global_error_flag && stop_on_error; return 0; } }; } // Output an RFC4180-compatible CSV file. static void print_stats_csv(const char* filename) { std::ofstream* outfile = 0; std::ostream* out; if (!strncmp(filename, "-", 2)) { out = &std::cout; } else { out = outfile = new std::ofstream(filename); if (!outfile) error(2, errno, "cannot open '%s'", filename); } unsigned ntrans = translators.size(); unsigned rounds = vstats.size(); assert(rounds == formulas.size()); *out << "\"formula\",\"tool\","; statistics::fields(*out, !opt_omit, has_sr); *out << '\n'; for (unsigned r = 0; r < rounds; ++r) for (unsigned t = 0; t < ntrans; ++t) if (!opt_omit || vstats[r][t].ok) { *out << '"'; spot::escape_rfc4180(*out, formulas[r]); *out << "\",\""; spot::escape_rfc4180(*out, translators[t].name); *out << "\","; vstats[r][t].to_csv(*out, !opt_omit, has_sr); *out << '\n'; } delete outfile; } static void print_stats_json(const char* filename) { std::ofstream* outfile = 0; std::ostream* out; if (!strncmp(filename, "-", 2)) { out = &std::cout; } else { out = outfile = new std::ofstream(filename); if (!outfile) error(2, errno, "cannot open '%s'", filename); } unsigned ntrans = translators.size(); unsigned rounds = vstats.size(); assert(rounds == formulas.size()); *out << "{\n \"tool\": [\n \""; spot::escape_str(*out, translators[0].name); for (unsigned t = 1; t < ntrans; ++t) { *out << "\",\n \""; spot::escape_str(*out, translators[t].name); } *out << "\"\n ],\n \"formula\": [\n \""; spot::escape_str(*out, formulas[0]); for (unsigned r = 1; r < rounds; ++r) { *out << "\",\n \""; spot::escape_str(*out, formulas[r]); } *out << ("\"\n ],\n \"fields\": [\n \"formula\",\"tool\","); statistics::fields(*out, !opt_omit, has_sr); *out << "\n ],\n \"inputs\": [ 0, 1 ],"; *out << "\n \"results\": ["; bool notfirst = false; for (unsigned r = 0; r < rounds; ++r) for (unsigned t = 0; t < ntrans; ++t) if (!opt_omit || vstats[r][t].ok) { if (notfirst) *out << ','; notfirst = true; *out << "\n [ " << r << ',' << t << ','; vstats[r][t].to_csv(*out, !opt_omit, has_sr, "null"); *out << " ]"; } *out << "\n ]\n}\n"; delete outfile; } int main(int argc, char** argv) { setup(argv); const argp ap = { options, parse_opt, "[COMMANDFMT...]", argp_program_doc, children, 0, 0 }; if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, 0, 0)) exit(err); if (jobs.empty()) jobs.emplace_back("-", 1); if (translators.empty()) error(2, 0, "No translator to run? Run '%s --help' for usage.", program_name); if (color_opt == color_if_tty) color_opt = isatty(STDERR_FILENO) ? color_always : color_never; setup_sig_handler(); processor p; if (p.run()) return 2; if (formulas.empty()) { error(2, 0, "no formula to translate"); } else { if (global_error_flag) { std::ostream& err = global_error(); err << ("error: some error was detected during the above runs,\n" " please search for 'error:' messages in the above " "trace.") << std::endl; if (timeout_count == 1) err << "Additionally, 1 timeout occurred." << std::endl; else if (timeout_count > 1) err << "Additionally, " << timeout_count << " timeouts occurred." << std::endl; end_error(); } else if (timeout_count == 0) std::cerr << "No problem detected." << std::endl; else if (timeout_count == 1) std::cerr << "1 timeout, but no other problem detected." << std::endl; else std::cerr << timeout_count << " timeouts, but no other problem detected." << std::endl; } if (json_output) print_stats_json(json_output); if (csv_output) print_stats_csv(csv_output); return global_error_flag; }