// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. #include namespace spot { /// \addtogroup random Random functions /// \ingroup misc_tools /// @{ /// \brief Reset the seed of the pseudo-random number generator. /// /// \see drand, mrand, rrand void srand(unsigned int seed); /// \brief Compute a pseudo-random integer value between \a min and /// \a max included. /// /// \see drand, mrand, srand int rrand(int min, int max); /// \brief Compute a pseudo-random integer value between 0 and /// \a max-1 included. /// /// \see drand, rrand, srand int mrand(int max); /// \brief Compute a pseudo-random double value /// between 0.0 and 1.0 (1.0 excluded). /// /// \see mrand, rrand, srand double drand(); /// \brief Compute a pseudo-random double value /// following a standard normal distribution. (Odeh & Evans) /// /// This uses a polynomial approximation of the inverse cumulated /// density function from Odeh & Evans, Journal of Applied /// Statistics, 1974, vol 23, pp 96-97. double nrand(); /// \brief Compute a pseudo-random double value /// following a standard normal distribution. (Box-Muller) /// /// This uses the polar form of the Box-Muller transform /// to generate random values. double bmrand(); /// \brief Compute pseudo-random integer value between 0 /// and \a n included, following a binomial distribution /// for probability \a p. /// /// \a gen must be a random function computing a pseudo-random /// double value following a standard normal distribution. /// Use nrand() or bmrand(). /// /// Usually approximating a binomial distribution using a normal /// distribution and is accurate only if n*p and /// n*(1-p) are greater than 5. template class barand { public: barand(int n, double p) : n_(n), m_(n * p), s_(sqrt(n * p * (1 - p))) { } int rand() const { int res; for (;;) { double x = gen() * s_ + m_; if (x < 0.0) continue; res = static_cast (x); if (res <= n_) break; } return res; } protected: const int n_; const double m_; const double s_; }; /// \brief Return a pseudo-random positive integer value /// following a Poisson distribution with parameter \a p. /// /// \pre p > 0 int prand(double p); /// @} }