// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. //#define TRACE #include #ifdef TRACE #define trace std::cerr #else #define trace while (0) std::cerr #endif #include #include #include "misc/hash.hh" #include "tgba/tgba.hh" #include "emptiness.hh" #include "emptiness_stats.hh" #include "magic.hh" #include "ndfs_result.hxx" namespace spot { namespace { enum color {WHITE, BLUE, RED}; /// \brief Emptiness checker on spot::tgba automata having at most one /// accepting condition (i.e. a TBA). template class magic_search : public emptiness_check, public ec_statistics { public: /// \brief Initialize the Magic Search algorithm on the automaton \a a /// /// \pre The automaton \a a must have at most one accepting /// condition (i.e. it is a TBA). magic_search(const tgba *a, size_t size) : emptiness_check(a), h(size), all_cond(a->all_acceptance_conditions()) { assert(a->number_of_acceptance_conditions() <= 1); } virtual ~magic_search() { // Release all iterators on the stacks. while (!st_blue.empty()) { h.pop_notify(st_blue.front().s); delete st_blue.front().it; st_blue.pop_front(); } while (!st_red.empty()) { h.pop_notify(st_red.front().s); delete st_red.front().it; st_red.pop_front(); } } /// \brief Perform a Magic Search. /// /// \return non null pointer iff the algorithm has found a /// new accepting path. /// /// check() can be called several times (until it returns a null /// pointer) to enumerate all the visited accepting paths. The method /// visits only a finite set of accepting paths. virtual emptiness_check_result* check() { if (st_red.empty()) { assert(st_blue.empty()); const state* s0 = a_->get_init_state(); inc_states(); h.add_new_state(s0, BLUE); push(st_blue, s0, bddfalse, bddfalse); if (dfs_blue()) return new ndfs_result, heap>(*this); } else { h.pop_notify(st_red.front().s); pop(st_red); if (!st_red.empty() && dfs_red()) return new ndfs_result, heap>(*this); else if (dfs_blue()) return new ndfs_result, heap>(*this); } return 0; } virtual std::ostream& print_stats(std::ostream &os) const { os << states() << " distinct nodes visited" << std::endl; os << transitions() << " transitions explored" << std::endl; os << max_depth() << " nodes for the maximal stack depth" << std::endl; if (!st_red.empty()) { assert(!st_blue.empty()); os << st_blue.size() + st_red.size() - 1 << " nodes for the counter example" << std::endl; } return os; } const heap& get_heap() const { return h; } const stack_type& get_st_blue() const { return st_blue; } const stack_type& get_st_red() const { return st_red; } private: void push(stack_type& st, const state* s, const bdd& label, const bdd& acc) { inc_depth(); tgba_succ_iterator* i = a_->succ_iter(s); i->first(); st.push_front(stack_item(s, i, label, acc)); } void pop(stack_type& st) { dec_depth(); delete st.front().it; st.pop_front(); } /// \brief Stack of the blue dfs. stack_type st_blue; /// \brief Stack of the red dfs. stack_type st_red; /// \brief Map where each visited state is colored /// by the last dfs visiting it. heap h; /// State targeted by the red dfs. const state* target; /// The unique accepting condition of the automaton \a a. bdd all_cond; bool dfs_blue() { while (!st_blue.empty()) { stack_item& f = st_blue.front(); trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) { trace << " It is white, go down" << std::endl; inc_states(); h.add_new_state(s_prime, BLUE); push(st_blue, s_prime, label, acc); } else { if (acc == all_cond && c.get_color() != RED) { // the test 'c.get_color() != RED' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. trace << " It is blue and the arc is " << "accepting, start a red dfs" << std::endl; target = f.s; c.set_color(RED); push(st_red, s_prime, label, acc); if (dfs_red()) return true; } else { trace << " It is blue or red, pop it" << std::endl; h.pop_notify(s_prime); } } } else // Backtrack the edge // (predecessor of f.s in st_blue, , f.s) { trace << " All the successors have been visited" << std::endl; stack_item f_dest(f); pop(st_blue); typename heap::color_ref c = h.get_color_ref(f_dest.s); assert(!c.is_white()); if (!st_blue.empty() && f_dest.acc == all_cond && c.get_color() != RED) { // the test 'c.get_color() != RED' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. trace << " It is blue and the arc from " << a_->format_state(st_blue.front().s) << " to it is accepting, start a red dfs" << std::endl; target = st_blue.front().s; c.set_color(RED); push(st_red, f_dest.s, f_dest.label, f_dest.acc); if (dfs_red()) return true; } else { trace << " Pop it" << std::endl; h.pop_notify(f_dest.s); } } } return false; } bool dfs_red() { assert(!st_red.empty()); if (target->compare(st_red.front().s) == 0) return true; while (!st_red.empty()) { stack_item& f = st_red.front(); trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) { // If the red dfs find a white here, it must have crossed // the blue stack and the target must be reached soon. // Notice that this property holds only for explicit search. // Collisions in bit-state hashing search can also lead // to the visit of white state. Anyway, it is not necessary // to visit white states either if a cycle can be missed // with bit-state hashing search. trace << " It is white, pop it" << std::endl; delete s_prime; } else if (c.get_color() == BLUE) { trace << " It is blue, go down" << std::endl; c.set_color(RED); push(st_red, s_prime, label, acc); if (target->compare(s_prime) == 0) return true; } else { trace << " It is red, pop it" << std::endl; h.pop_notify(s_prime); } } else // Backtrack { trace << " All the successors have been visited, pop it" << std::endl; h.pop_notify(f.s); pop(st_red); } } return false; } }; class explicit_magic_search_heap { public: class color_ref { public: color_ref(color* c) :p(c) { } color get_color() const { return *p; } void set_color(color c) { assert(!is_white()); *p=c; } bool is_white() const { return p==0; } private: color *p; }; explicit_magic_search_heap(size_t) { } ~explicit_magic_search_heap() { hash_type::const_iterator s = h.begin(); while (s != h.end()) { // Advance the iterator before deleting the "key" pointer. const state* ptr = s->first; ++s; delete ptr; } } color_ref get_color_ref(const state*& s) { hash_type::iterator it = h.find(s); if (it==h.end()) return color_ref(0); if (s!=it->first) { delete s; s = it->first; } return color_ref(&(it->second)); } void add_new_state(const state* s, color c) { assert(h.find(s)==h.end()); h.insert(std::make_pair(s, c)); } void pop_notify(const state*) const { } bool has_been_visited(const state* s) const { hash_type::const_iterator it = h.find(s); return (it != h.end()); } enum { Has_Size = 1 }; int size() const { return h.size(); } private: typedef Sgi::hash_map hash_type; hash_type h; }; class bsh_magic_search_heap { public: class color_ref { public: color_ref(unsigned char *b, unsigned char o): base(b), offset(o*2) { } color get_color() const { return color(((*base) >> offset) & 3U); } void set_color(color c) { *base = (*base & ~(3U << offset)) | (c << offset); } bool is_white() const { return get_color()==WHITE; } private: unsigned char *base; unsigned char offset; }; bsh_magic_search_heap(size_t s) { size_ = s; h = new unsigned char[size_]; memset(h, WHITE, size_); } ~bsh_magic_search_heap() { delete[] h; } color_ref get_color_ref(const state*& s) { size_t ha = s->hash(); return color_ref(&(h[ha%size_]), ha%4); } void add_new_state(const state* s, color c) { color_ref cr(get_color_ref(s)); assert(cr.is_white()); cr.set_color(c); } void pop_notify(const state* s) const { delete s; } bool has_been_visited(const state* s) const { size_t ha = s->hash(); return color((h[ha%size_] >> ((ha%4)*2)) & 3U) != WHITE; } enum { Has_Size = 0 }; private: size_t size_; unsigned char* h; }; } // anonymous emptiness_check* explicit_magic_search(const tgba *a) { return new magic_search(a, 0); } emptiness_check* bit_state_hashing_magic_search( const tgba *a, size_t size) { return new magic_search(a, size); } }