#+TITLE: Parsing and Printing LTL Formulas #+SETUPFILE: setup.org #+HTML_LINK_UP: tut.html Our first task is to read formulas and print them in another syntax. * Shell command Using =ltlfilt=, you can easily read an LTL formula in one syntax, and output it in another syntax. By default the parser will accept a formula in [[file:ioltl.org][any infix syntax]], but if the input is in the prefix syntax of LBT, you should use [[file:ioltl.org][=--lbt-input=]]. The output syntax is controlled using different options such as (=--spin=, =--lbt=, =--latex=, etc.). Full parentheses can also be requested using =-p=. #+BEGIN_SRC sh :results verbatim :exports both ltlfilt -f '[]<>p0 || <>[]p1' --latex formula='& & G p0 p1 p2' ltlfilt --lbt-input -f "$formula" --lbt ltlfilt --lbt-input -f "$formula" --spin -p #+END_SRC #+RESULTS: : \G \F p_{0} \lor \F \G p_{1} : & & p1 p2 G p0 : (p1) && (p2) && ([](p0)) The reason the LBT parser has to be explicitly enabled is because of some corner cases that have different meanings in the two syntaxes. (For instance =t= and =f= are the true constant in LBT's syntax, but they are considered as atomic propositions in all the other syntaxes.) * Python bindings Here are the same operation in Python #+BEGIN_SRC python :results output :exports both import spot f = spot.formula('[]<>p0 || <>[]p1') print(f.to_str('latex')) f = spot.formula('& & G p0 p1 p2') print(f.to_str('lbt')) print(f.to_str('spin', parenth=True)) #+END_SRC #+RESULTS: : \G \F p_{0} \lor \F \G p_{1} : & & p1 p2 G p0 : (p1) && (p2) && ([](p0)) The =spot.formula= function wraps the calls to the two formula parsers of Spot. It first tries to parse the formula using infix syntaxes, and if it fails, it tries to parse it with the prefix parser. (So this might fail to correctly interpret =t= or =f= if you are processing a list of LBT formulas.) Using =spot.formula=, parse errors are returned as an exception. * C++ ** Simple wrapper for the two parsers We first start with the easy parser interface, similar to the one used above in the python bindings. Here parse errors would be returned as exceptions. #+BEGIN_SRC C++ :results verbatim :exports both #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" int main() { print_latex_psl(std::cout, spot::ltl::parse_formula("[]<>p0 || <>[]p1")) << '\n'; const spot::ltl::formula* f = spot::ltl::parse_formula("& & G p0 p1 p2"); print_lbt_ltl(std::cout, f) << '\n'; print_spin_ltl(std::cout, f, true) << '\n'; f->destroy(); return 0; } #+END_SRC #+RESULTS: : \G \F p_{0} \lor \F \G p_{1} : & & p1 p2 G p0 : (p1) && (p2) && ([](p0)) Notice that the different output routines specify in their name the syntax the output, and the type of formula they can output. Here we are only using LTL formulas for demonstration, so those three functions are OK with that. Did you notice the calls to =f->destroy()= at the end? The LTL formula objects are implemented as DAG with sharing of subformulas. Each (sub)formula is therefore reference counted, and currently this is done manually by calling =f->clone()= and =f->destroy()= (do not ever =delete= a formula, always call =f->destroy()=). We do not recommend using this =parse_formula()= interface because of the potential formulas (like =f= or =t=) that have different meanings in the two parsers that are tried. Instead, depending on whether you want to parse formulas with infix syntax, or formulas with prefix syntax, you should call the specific parser. Additionally, this give you control over how to print errors. ** Calling the infix parser explicitly Here is how to call the infix parser explicitly,: #+BEGIN_SRC C++ :results verbatim :exports both #include #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" int main() { std::string input = "[]<>p0 || <>[]p1"; spot::ltl::parse_error_list pel; const spot::ltl::formula* f = spot::ltl::parse_infix_psl(input, pel); if (spot::ltl::format_parse_errors(std::cerr, input, pel)) { if (f) f->destroy(); return 1; } print_latex_psl(std::cout, f) << '\n'; f->destroy(); return 0; } #+END_SRC #+RESULTS: : \G \F p_{0} \lor \F \G p_{1} So =parse_infix_psl()= processes =input=, and stores any diagnostic in =pel=, which is a list of pairs associating each error to a location. You could iterate over that list to print it by yourself as you wish, or you can call =format_parse_errors()= to do that for you. Note that as its name implies, this parser can read more than LTL formulas (the fragment of PSL we support is basically LTL extended with regular expressions). If =pel= is empty, =format_parse_errors()= will do nothing and return false. If =pel= is non empty, =format_parse_errors()= will display the errors messages and return true. In the above code, we have decided to aborts the execution in this case. However the parser usually tries to do some error recovery. For instance if you have input =(a U b))= the parser will complain about the extra parenthesis (=pel= not empty), but it will still return an =f= that is equivalent to =a U b=. So you could decide to continue with the "fixed" formula if you wish. Here is an example: #+BEGIN_SRC C++ :results verbatim :exports both #include #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" int main() { std::string input = "(a U b))"; spot::ltl::parse_error_list pel; const spot::ltl::formula* f = spot::ltl::parse_infix_psl(input, pel); // Use std::cout instead of std::cerr because we can only // show the output of std::cout in this documentation. (void) spot::ltl::format_parse_errors(std::cout, input, pel); if (f == nullptr) return 1; print_latex_psl(std::cout, f) << '\n'; f->destroy(); return 0; } #+END_SRC #+RESULTS: : >>> (a U b)) : ^ : syntax error, unexpected closing parenthesis : : >>> (a U b)) : ^ : ignoring trailing garbage : : a \U b The formula =f= is only returned as null when the parser really cannot recover anything. ** Calling the prefix parser explicitly The only difference here is the call to =parse_prefix_ltl()= instead of =parse_infix_psl()=. #+BEGIN_SRC C++ :results verbatim :exports both #include #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" int main() { std::string input = "& & G p0 p1 p2"; spot::ltl::parse_error_list pel; const spot::ltl::formula* f = spot::ltl::parse_prefix_ltl(input, pel); if (spot::ltl::format_parse_errors(std::cerr, input, pel)) { if (f) f->destroy(); return 1; } print_lbt_ltl(std::cout, f) << '\n'; print_spin_ltl(std::cout, f, true) << '\n'; f->destroy(); return 0; } #+END_SRC #+RESULTS: : & & p1 p2 G p0 : (p1) && (p2) && ([](p0)) * Additional Comments ** PSL vs LTL LTL is a subset of PSL as far as Spot is concerned, so you can parse an LTL formula with =parse_infix_psl()=, and later print it with for instance =print_spin_ltl()= (which, as its name implies, can only print LTL formulas). There is no =parse_infix_ltl()= function because you can simply use =parse_infix_psl()= to parse LTL formulas. There is a potential problem if you design a tool that only works with LTL formulas, but call =parse_infix_psl()= to parse user input. In that case, the user might well input a PSL formula and cause problem down the line. For instance, let's see what happens if a PSL formulas is passed to =print_spin_ltl=: #+BEGIN_SRC C++ :results verbatim :exports both #include #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" int main() { std::string input = "{a*;b}<>->(a U (b & GF c))"; spot::ltl::parse_error_list pel; const spot::ltl::formula* f = spot::ltl::parse_infix_psl(input, pel); if (spot::ltl::format_parse_errors(std::cerr, input, pel)) { if (f) f->destroy(); return 1; } print_spin_ltl(std::cout, f) << '\n'; f->destroy(); return 0; } #+END_SRC #+RESULTS: : {a[*];b}<>-> (a U (b && []<>c)) The output is a 'best effort' output. The LTL subformulas have been rewritten, but the PSL-specific part (the SERE and =<>->= operator) are output in the only syntax Spot knows, definitively not Spin-compatible. If that is unwanted, here are two possible solutions. The first is to simply diagnose non-LTL formulas. #+BEGIN_SRC C++ :results verbatim :exports code #include #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" int main() { std::string input = "{a*;b}<>->(a U (b & GF c))"; spot::ltl::parse_error_list pel; const spot::ltl::formula* f = spot::ltl::parse_infix_psl(input, pel); if (spot::ltl::format_parse_errors(std::cerr, input, pel)) { if (f) f->destroy(); return 1; } if (!f->is_ltl_formula()) { f->destroy(); std::cerr << "Only LTL formulas are supported.\n"; return 1; } print_spin_ltl(std::cout, f) << '\n'; f->destroy(); return 0; } #+END_SRC A second (but slightly weird) idea would be to try to simplify the PSL formula, and hope that the PSL simplify is able to come up with an equivalent LTL formula. This does not always work, so you need to be prepared to reject the formula any way. In our example, we are lucky (maybe because it was carefully chosen...): #+BEGIN_SRC C++ :results verbatim :exports code #include #include #include "ltlparse/public.hh" #include "ltlvisit/print.hh" #include "ltlvisit/simplify.hh" int main() { std::string input = "{a*;b}<>->(a U (b & GF c))"; spot::ltl::parse_error_list pel; const spot::ltl::formula* f = spot::ltl::parse_infix_psl(input, pel); if (spot::ltl::format_parse_errors(std::cerr, input, pel)) { if (f) f->destroy(); return 1; } if (!f->is_ltl_formula()) { spot::ltl::ltl_simplifier simp; const formula* g = simp.simplify(f); f->destroy(); f = g; } if (!f->is_ltl_formula()) { f->destroy(); std::cerr << "Only LTL formulas are supported.\n"; return 1; } print_spin_ltl(std::cout, f) << '\n'; f->destroy(); return 0; } #+END_SRC #+RESULTS: : a U (b && (a U (b && []<>c))) ** Lenient parsing In version 6, Spin extended its command-line LTL parser to accept arbitrary atomic propositions to be specified. For instance =(a > 4) U (b < 5)= would be correct input, with =a > 4= and =b < 5= considered as two atomic propositions. Of course the atomic proposition could be arbitrarily complex, and there is no way we can teach Spot about the syntax for atomic propositions supported by any tool. The usual workaround in Spot is to double-quote any arbitrary atomic proposition: #+BEGIN_SRC sh :results verbatim :exports both echo compare ltlfilt -f '"a > 4" U "b < 5"' echo and ltlfilt -f '"a > 4" U "b < 5"' --spin #+END_SRC #+RESULTS: : compare : "a > 4" U "b < 5" : and : (a > 4) U (b < 5) When the Spin output is requested, these atomic propositions are atomically output in a way that Spin can parse. This Spin syntax is not accepted by default by the infix parser, but it has an option for that. This is called /lenient parsing/: when the parser finds a parenthetical block it does not understand, it simply assume that this block represents an atomic proposition. #+BEGIN_SRC sh :results verbatim :exports both ltlfilt --lenient -f '(a > 4) U (b < 5)' #+END_SRC #+RESULTS: : "a > 4" U "b < 5" Lenient parsing is risky, because any parenthesized sub-formula that is a syntax-error will be treated as an atomic proposition: #+BEGIN_SRC sh :results verbatim :exports both ltlfilt --lenient -f '(a U ) U c' #+END_SRC #+RESULTS: : "a U" U c In C++ you can enable lenient using one of the Boolean arguments of =parse_infix_psl()=.