// -*- coding: utf-8 -*- // Copyright (C) 2009, 2013-2015, 2019 Laboratoire de Recherche et // Développement de l'Epita (LRDE). // Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #pragma once #include #include #include namespace spot { /// \ingroup misc_tools /// \brief Generate an irredundant sum-of-products (ISOP) form of a /// BDD function. /// /// This algorithm implements a derecursived version the Minato-Morreale /// algorithm. \cite minato.92.sasimi class SPOT_API minato_isop { public: /// \brief Conctructor. /// \arg input The BDD function to translate in ISOP. minato_isop(bdd input); /// \brief Conctructor. /// \arg input The BDD function to translate in ISOP. /// \arg vars The set of BDD variables to factorize in \a input. minato_isop(bdd input, bdd vars); /// \brief Conctructor. /// /// This version allow some flexibility in computing the ISOP. /// the result must be within \a input_min and \a input_max. /// \arg input_min The minimum BDD function to translate in ISOP. /// \arg input_max The maximum BDD function to translate in ISOP. minato_isop(bdd input_min, bdd input_max, bool); /// \brief Compute the next sum term of the ISOP form. /// Return \c bddfalse when all terms have been output. bdd next(); private: /// Internal variables for minato_isop. struct local_vars { // If you are following the paper, f_min and f_max correspond // to the pair of BDD functions used to encode the ternary function f // (see Section 3.4). // Also note that f0, f0', and f0'' all share the same _max function. // Likewise for f1, f1', and f1''. bdd f_min, f_max; // Because we need a non-recursive version of the algorithm, // we had to split it in four steps (each step is separated // from the other by a call to ISOP in the original algorithm). enum { FirstStep, SecondStep, ThirdStep, FourthStep } step; // The list of variables to factorize. This is an addition to // the original algorithm. bdd vars; bdd v1; bdd f0_min, f0_max; bdd f1_min, f1_max; bdd g0, g1; local_vars(bdd f_min, bdd f_max, bdd vars) noexcept : f_min(f_min), f_max(f_max), step(FirstStep), vars(vars) {} }; std::stack todo_; std::stack cube_; bdd ret_; }; }