// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2013-2015, 2019 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#pragma once
#include
#include
#include
namespace spot
{
/// \ingroup misc_tools
/// \brief Generate an irredundant sum-of-products (ISOP) form of a
/// BDD function.
///
/// This algorithm implements a derecursived version the Minato-Morreale
/// algorithm. \cite minato.92.sasimi
class SPOT_API minato_isop
{
public:
/// \brief Conctructor.
/// \arg input The BDD function to translate in ISOP.
minato_isop(bdd input);
/// \brief Conctructor.
/// \arg input The BDD function to translate in ISOP.
/// \arg vars The set of BDD variables to factorize in \a input.
minato_isop(bdd input, bdd vars);
/// \brief Conctructor.
///
/// This version allow some flexibility in computing the ISOP.
/// the result must be within \a input_min and \a input_max.
/// \arg input_min The minimum BDD function to translate in ISOP.
/// \arg input_max The maximum BDD function to translate in ISOP.
minato_isop(bdd input_min, bdd input_max, bool);
/// \brief Compute the next sum term of the ISOP form.
/// Return \c bddfalse when all terms have been output.
bdd next();
private:
/// Internal variables for minato_isop.
struct local_vars
{
// If you are following the paper, f_min and f_max correspond
// to the pair of BDD functions used to encode the ternary function f
// (see Section 3.4).
// Also note that f0, f0', and f0'' all share the same _max function.
// Likewise for f1, f1', and f1''.
bdd f_min, f_max;
// Because we need a non-recursive version of the algorithm,
// we had to split it in four steps (each step is separated
// from the other by a call to ISOP in the original algorithm).
enum { FirstStep, SecondStep, ThirdStep, FourthStep } step;
// The list of variables to factorize. This is an addition to
// the original algorithm.
bdd vars;
bdd v1;
bdd f0_min, f0_max;
bdd f1_min, f1_max;
bdd g0, g1;
local_vars(bdd f_min, bdd f_max, bdd vars) noexcept
: f_min(f_min), f_max(f_max), step(FirstStep), vars(vars) {}
};
std::stack todo_;
std::stack cube_;
bdd ret_;
};
}