// -*- coding: utf-8 -*-
// Copyright (C) 2017-2018 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include
#include "argmatch.h"
#include "common_aoutput.hh"
#include "common_finput.hh"
#include "common_setup.hh"
#include "common_sys.hh"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
enum
{
OPT_ALGO = 256,
OPT_INPUT,
OPT_OUTPUT,
OPT_PRINT,
OPT_PRINT_AIGER,
OPT_REAL,
OPT_VERBOSE
};
static const argp_option options[] =
{
/**************************************************/
{ nullptr, 0, nullptr, 0, "Input options:", 1 },
{ "ins", OPT_INPUT, "PROPS", 0,
"comma-separated list of uncontrollable (a.k.a. input) atomic"
" propositions", 0},
{ "outs", OPT_OUTPUT, "PROPS", 0,
"comma-separated list of controllable (a.k.a. output) atomic"
" propositions", 0},
/**************************************************/
{ nullptr, 0, nullptr, 0, "Fine tuning:", 10 },
{ "algo", OPT_ALGO, "qp|rec", 0,
"choose the parity game algorithm, valid ones are rec (Zielonka's"
" recursive algorithm, default) and qp (Calude et al.'s quasi-polynomial"
" time algorithm)", 0 },
/**************************************************/
{ nullptr, 0, nullptr, 0, "Output options:", 20 },
{ "print-pg", OPT_PRINT, nullptr, 0,
"print the parity game in the pgsolver format, do not solve it", 0},
{ "realizability", OPT_REAL, nullptr, 0,
"realizability only, do not compute a winning strategy", 0},
{ "aiger", OPT_PRINT_AIGER, nullptr, 0,
"prints the winning strategy as an AIGER circuit", 0},
{ "verbose", OPT_VERBOSE, nullptr, 0,
"verbose mode", -1 },
/**************************************************/
{ nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 },
{ nullptr, 0, nullptr, 0, nullptr, 0 },
};
static const struct argp_child children[] =
{
{ &finput_argp_headless, 0, nullptr, 0 },
{ &aoutput_argp, 0, nullptr, 0 },
//{ &aoutput_o_format_argp, 0, nullptr, 0 },
{ &misc_argp, 0, nullptr, 0 },
{ nullptr, 0, nullptr, 0 }
};
const char argp_program_doc[] = "\
Synthesize a controller from its LTL specification.\v\
Exit status:\n\
0 if the input problem is realizable\n\
1 if the input problem is not realizable\n\
2 if any error has been reported";
static std::vector input_aps;
static std::vector output_aps;
bool opt_print_pg(false);
bool opt_real(false);
bool opt_print_aiger(false);
// FIXME rename options to choose the algorithm
enum solver
{
QP,
REC
};
static char const *const solver_args[] =
{
"qp", "quasi-polynomial",
"recursive",
nullptr
};
static solver const solver_types[] =
{
QP, QP,
REC,
};
ARGMATCH_VERIFY(solver_args, solver_types);
static solver opt_solver = REC;
static bool verbose = false;
namespace
{
// Ensures that the game is complete for player 0.
// Also computes the owner of each state (false for player 0, i.e. env).
// Initial state belongs to Player 0 and the game is turn-based.
static std::vector
complete_env(spot::twa_graph_ptr& arena)
{
unsigned sink_env = arena->new_state();
unsigned sink_con = arena->new_state();
auto um = arena->acc().unsat_mark();
if (!um.first)
throw std::runtime_error("game winning condition is a tautology");
arena->new_edge(sink_con, sink_env, bddtrue, um.second);
arena->new_edge(sink_env, sink_con, bddtrue, um.second);
std::vector seen(arena->num_states(), false);
std::vector todo({arena->get_init_state_number()});
std::vector owner(arena->num_states(), false);
owner[arena->get_init_state_number()] = false;
owner[sink_env] = true;
while (!todo.empty())
{
unsigned src = todo.back();
todo.pop_back();
seen[src] = true;
bdd missing = bddtrue;
for (const auto& e: arena->out(src))
{
if (!owner[src])
missing -= e.cond;
if (!seen[e.dst])
{
owner[e.dst] = !owner[src];
todo.push_back(e.dst);
}
}
if (!owner[src] && missing != bddfalse)
arena->new_edge(src, sink_con, missing, um.second);
}
return owner;
}
static spot::twa_graph_ptr
to_dpa(const spot::twa_graph_ptr& split)
{
// if the input automaton is deterministic, degeneralize it to be sure to
// end up with a parity automaton
auto dpa = spot::tgba_determinize(spot::degeneralize_tba(split));
dpa->merge_edges();
if (opt_print_pg)
dpa = spot::sbacc(dpa);
spot::colorize_parity_here(dpa, true);
spot::change_parity_here(dpa, spot::parity_kind_max,
spot::parity_style_odd);
bool max, odd;
dpa->acc().is_parity(max, odd);
assert(max && odd);
assert(spot::is_deterministic(dpa));
return dpa;
}
// Construct a smaller automaton, filtering out states that are not
// accessible. Also merge back pairs of p --(i)--> q --(o)--> r
// transitions to p --(i&o)--> r.
static spot::twa_graph_ptr
strat_to_aut(const spot::parity_game& pg,
const spot::parity_game::strategy_t& strat,
const spot::twa_graph_ptr& dpa,
bdd all_outputs)
{
auto aut = spot::make_twa_graph(dpa->get_dict());
aut->copy_ap_of(dpa);
std::vector todo{pg.get_init_state_number()};
std::vector pg2aut(pg.num_states(), -1);
aut->set_init_state(aut->new_state());
pg2aut[pg.get_init_state_number()] = aut->get_init_state_number();
while (!todo.empty())
{
unsigned s = todo.back();
todo.pop_back();
for (auto& e1: dpa->out(s))
{
unsigned i = 0;
for (auto& e2: dpa->out(e1.dst))
{
bool self_loop = false;
if (e1.dst == s || e2.dst == e1.dst)
self_loop = true;
if (self_loop || strat.at(e1.dst) == i)
{
bdd out = bdd_satoneset(e2.cond, all_outputs, bddfalse);
if (pg2aut[e2.dst] == -1)
{
pg2aut[e2.dst] = aut->new_state();
todo.push_back(e2.dst);
}
aut->new_edge(pg2aut[s], pg2aut[e2.dst],
(e1.cond & out), {});
break;
}
++i;
}
}
}
aut->purge_dead_states();
aut->set_named_prop("synthesis-outputs", new bdd(all_outputs));
return aut;
}
class ltl_processor final : public job_processor
{
private:
spot::translator& trans_;
std::vector input_aps_;
std::vector output_aps_;
public:
ltl_processor(spot::translator& trans,
std::vector input_aps_,
std::vector output_aps_)
: trans_(trans), input_aps_(input_aps_), output_aps_(output_aps_)
{
}
int process_formula(spot::formula f,
const char*, int) override
{
spot::process_timer timer;
timer.start();
auto aut = trans_.run(&f);
if (verbose)
std::cerr << "translating formula done" << std::endl;
bdd all_inputs = bddtrue;
bdd all_outputs = bddtrue;
for (unsigned i = 0; i < input_aps_.size(); ++i)
{
std::ostringstream lowercase;
for (char c: input_aps_[i])
lowercase << (char)std::tolower(c);
unsigned v = aut->register_ap(spot::formula::ap(lowercase.str()));
all_inputs &= bdd_ithvar(v);
}
for (unsigned i = 0; i < output_aps_.size(); ++i)
{
std::ostringstream lowercase;
for (char c: output_aps_[i])
lowercase << (char)std::tolower(c);
unsigned v = aut->register_ap(spot::formula::ap(lowercase.str()));
all_outputs &= bdd_ithvar(v);
}
auto split = split_2step(aut, all_inputs);
if (verbose)
std::cerr << "split inputs and outputs done" << std::endl;
auto dpa = to_dpa(split);
if (verbose)
std::cerr << "determinization done" << std::endl;
auto owner = complete_env(dpa);
auto pg = spot::parity_game(dpa, owner);
if (verbose)
std::cerr << "parity game built" << std::endl;
timer.stop();
if (opt_print_pg)
{
pg.print(std::cout);
return 0;
}
switch (opt_solver)
{
case REC:
{
spot::parity_game::strategy_t strategy[2];
spot::parity_game::region_t winning_region[2];
pg.solve(winning_region, strategy);
if (winning_region[1].count(pg.get_init_state_number()))
{
std::cout << "REALIZABLE\n";
if (!opt_real)
{
auto strat_aut =
strat_to_aut(pg, strategy[1], dpa, all_outputs);
// output the winning strategy
if (opt_print_aiger)
spot::print_aiger(std::cout, strat_aut);
else
{
automaton_printer printer;
printer.print(strat_aut, timer);
}
}
return 0;
}
else
{
std::cout << "UNREALIZABLE\n";
return 1;
}
}
case QP:
if (!opt_real)
{
std::cout << "The quasi-polynomial time algorithm does not"
" implement synthesis yet, use --realizability\n";
return 2;
}
else if (pg.solve_qp())
{
std::cout << "REALIZABLE\n";
return 0;
}
else
{
std::cout << "UNREALIZABLE\n";
return 1;
}
default:
SPOT_UNREACHABLE();
return 2;
}
}
};
}
static int
parse_opt(int key, char* arg, struct argp_state*)
{
switch (key)
{
case OPT_INPUT:
{
std::istringstream aps(arg);
std::string ap;
while (std::getline(aps, ap, ','))
{
ap.erase(remove_if(ap.begin(), ap.end(), isspace), ap.end());
input_aps.push_back(ap);
}
break;
}
case OPT_OUTPUT:
{
std::istringstream aps(arg);
std::string ap;
while (std::getline(aps, ap, ','))
{
ap.erase(remove_if(ap.begin(), ap.end(), isspace), ap.end());
output_aps.push_back(ap);
}
break;
}
case OPT_PRINT:
opt_print_pg = true;
break;
case OPT_ALGO:
opt_solver = XARGMATCH("--algo", arg, solver_args, solver_types);
break;
case OPT_REAL:
opt_real = true;
break;
case OPT_PRINT_AIGER:
opt_print_aiger = true;
break;
case OPT_VERBOSE:
verbose = true;
break;
}
return 0;
}
int
main(int argc, char **argv)
{
setup(argv);
const argp ap = { options, parse_opt, nullptr,
argp_program_doc, children, nullptr, nullptr };
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
exit(err);
check_no_formula();
spot::translator trans;
ltl_processor processor(trans, input_aps, output_aps);
return processor.run();
}