// -*- coding: utf-8 -*- // Copyright (C) 2011, 2013, 2014 Laboratoire de recherche et // développement de l'Epita (LRDE). // Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . //#define TRACE #include #ifdef TRACE #define trace std::cerr #else #define trace while (0) std::cerr #endif #include #include #include "misc/hash.hh" #include "tgba/tgba.hh" #include "emptiness.hh" #include "emptiness_stats.hh" #include "magic.hh" #include "ndfs_result.hxx" namespace spot { namespace { enum color {WHITE, BLUE, RED}; /// \brief Emptiness checker on spot::tgba automata having at most one /// acceptance condition (i.e. a TBA). template class magic_search_ : public emptiness_check, public ec_statistics { public: /// \brief Initialize the Magic Search algorithm on the automaton \a a /// /// \pre The automaton \a a must have at most one acceptance /// condition (i.e. it is a TBA). magic_search_(const const_tgba_ptr& a, size_t size, option_map o = option_map()) : emptiness_check(a, o), h(size), all_cond(a->all_acceptance_conditions()) { assert(a->number_of_acceptance_conditions() <= 1); } virtual ~magic_search_() { // Release all iterators on the stacks. while (!st_blue.empty()) { h.pop_notify(st_blue.front().s); a_->release_iter(st_blue.front().it); st_blue.pop_front(); } while (!st_red.empty()) { h.pop_notify(st_red.front().s); a_->release_iter(st_red.front().it); st_red.pop_front(); } } /// \brief Perform a Magic Search. /// /// \return non null pointer iff the algorithm has found a /// new accepting path. /// /// check() can be called several times (until it returns a null /// pointer) to enumerate all the visited accepting paths. The method /// visits only a finite set of accepting paths. virtual emptiness_check_result_ptr check() { auto t = std::static_pointer_cast (this->emptiness_check::shared_from_this()); if (st_red.empty()) { assert(st_blue.empty()); const state* s0 = a_->get_init_state(); inc_states(); h.add_new_state(s0, BLUE); push(st_blue, s0, bddfalse, bddfalse); if (dfs_blue()) return std::make_shared(t, options()); } else { h.pop_notify(st_red.front().s); pop(st_red); if (!st_red.empty() && dfs_red()) return std::make_shared(t, options()); else if (dfs_blue()) return std::make_shared(t, options()); } return nullptr; } virtual std::ostream& print_stats(std::ostream &os) const { os << states() << " distinct nodes visited" << std::endl; os << transitions() << " transitions explored" << std::endl; os << max_depth() << " nodes for the maximal stack depth" << std::endl; if (!st_red.empty()) { assert(!st_blue.empty()); os << st_blue.size() + st_red.size() - 1 << " nodes for the counter example" << std::endl; } return os; } virtual bool safe() const { return heap::Safe; } const heap& get_heap() const { return h; } const stack_type& get_st_blue() const { return st_blue; } const stack_type& get_st_red() const { return st_red; } private: void push(stack_type& st, const state* s, const bdd& label, const bdd& acc) { inc_depth(); tgba_succ_iterator* i = a_->succ_iter(s); i->first(); st.emplace_front(s, i, label, acc); } void pop(stack_type& st) { dec_depth(); a_->release_iter(st.front().it); st.pop_front(); } /// \brief Stack of the blue dfs. stack_type st_blue; /// \brief Stack of the red dfs. stack_type st_red; /// \brief Map where each visited state is colored /// by the last dfs visiting it. heap h; /// State targeted by the red dfs. const state* target; /// The unique acceptance condition of the automaton \a a. bdd all_cond; bool dfs_blue() { while (!st_blue.empty()) { stack_item& f = st_blue.front(); trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) { trace << " It is white, go down" << std::endl; inc_states(); h.add_new_state(s_prime, BLUE); push(st_blue, s_prime, label, acc); } else { if (acc == all_cond && c.get_color() != RED) { // the test 'c.get_color() != RED' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. trace << " It is blue and the arc is " << "accepting, start a red dfs" << std::endl; target = f.s; c.set_color(RED); push(st_red, s_prime, label, acc); if (dfs_red()) return true; } else { trace << " It is blue or red, pop it" << std::endl; h.pop_notify(s_prime); } } } else // Backtrack the edge // (predecessor of f.s in st_blue, , f.s) { trace << " All the successors have been visited" << std::endl; stack_item f_dest(f); pop(st_blue); typename heap::color_ref c = h.get_color_ref(f_dest.s); assert(!c.is_white()); if (!st_blue.empty() && f_dest.acc == all_cond && c.get_color() != RED) { // the test 'c.get_color() != RED' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. trace << " It is blue and the arc from " << a_->format_state(st_blue.front().s) << " to it is accepting, start a red dfs" << std::endl; target = st_blue.front().s; c.set_color(RED); push(st_red, f_dest.s, f_dest.label, f_dest.acc); if (dfs_red()) return true; } else { trace << " Pop it" << std::endl; h.pop_notify(f_dest.s); } } } return false; } bool dfs_red() { assert(!st_red.empty()); if (target->compare(st_red.front().s) == 0) return true; while (!st_red.empty()) { stack_item& f = st_red.front(); trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) { // If the red dfs find a white here, it must have crossed // the blue stack and the target must be reached soon. // Notice that this property holds only for explicit search. // Collisions in bit-state hashing search can also lead // to the visit of white state. Anyway, it is not necessary // to visit white states either if a cycle can be missed // with bit-state hashing search. trace << " It is white, pop it" << std::endl; s_prime->destroy(); } else if (c.get_color() == BLUE) { trace << " It is blue, go down" << std::endl; c.set_color(RED); push(st_red, s_prime, label, acc); if (target->compare(s_prime) == 0) return true; } else { trace << " It is red, pop it" << std::endl; h.pop_notify(s_prime); } } else // Backtrack { trace << " All the successors have been visited, pop it" << std::endl; h.pop_notify(f.s); pop(st_red); } } return false; } class result_from_stack: public emptiness_check_result, public acss_statistics { public: result_from_stack(std::shared_ptr ms) : emptiness_check_result(ms->automaton()), ms_(ms) { } virtual tgba_run_ptr accepting_run() { assert(!ms_->st_blue.empty()); assert(!ms_->st_red.empty()); auto run = std::make_shared(); typename stack_type::const_reverse_iterator i, j, end; tgba_run::steps* l; l = &run->prefix; i = ms_->st_blue.rbegin(); end = ms_->st_blue.rend(); --end; j = i; ++j; for (; i != end; ++i, ++j) { tgba_run::step s = { i->s->clone(), j->label, j->acc }; l->push_back(s); } l = &run->cycle; j = ms_->st_red.rbegin(); tgba_run::step s = { i->s->clone(), j->label, j->acc }; l->push_back(s); i = j; ++j; end = ms_->st_red.rend(); --end; for (; i != end; ++i, ++j) { tgba_run::step s = { i->s->clone(), j->label, j->acc }; l->push_back(s); } return run; } unsigned acss_states() const { return 0; } private: std::shared_ptr ms_; }; # define FROM_STACK "ar:from_stack" class magic_search_result: public emptiness_check_result { public: magic_search_result(const std::shared_ptr& m, option_map o = option_map()) : emptiness_check_result(m->automaton(), o), ms(m) { if (options()[FROM_STACK]) computer = new result_from_stack(ms); else computer = new ndfs_result, heap>(ms); } virtual void options_updated(const option_map& old) { if (old[FROM_STACK] && !options()[FROM_STACK]) { delete computer; computer = new ndfs_result, heap>(ms); } else if (!old[FROM_STACK] && options()[FROM_STACK]) { delete computer; computer = new result_from_stack(ms); } } virtual ~magic_search_result() { delete computer; } virtual tgba_run_ptr accepting_run() { return computer->accepting_run(); } virtual const unsigned_statistics* statistics() const { return computer->statistics(); } private: emptiness_check_result* computer; std::shared_ptr ms; }; }; class explicit_magic_search_heap { public: enum { Safe = 1 }; class color_ref { public: color_ref(color* c) :p(c) { } color get_color() const { return *p; } void set_color(color c) { assert(!is_white()); *p=c; } bool is_white() const { return p == 0; } private: color *p; }; explicit_magic_search_heap(size_t) { } ~explicit_magic_search_heap() { hash_type::const_iterator s = h.begin(); while (s != h.end()) { // Advance the iterator before deleting the "key" pointer. const state* ptr = s->first; ++s; ptr->destroy(); } } color_ref get_color_ref(const state*& s) { hash_type::iterator it = h.find(s); if (it == h.end()) return color_ref(0); if (s != it->first) { s->destroy(); s = it->first; } return color_ref(&it->second); } void add_new_state(const state* s, color c) { assert(h.find(s) == h.end()); h.emplace(s, c); } void pop_notify(const state*) const { } bool has_been_visited(const state* s) const { hash_type::const_iterator it = h.find(s); return (it != h.end()); } enum { Has_Size = 1 }; int size() const { return h.size(); } private: typedef std::unordered_map hash_type; hash_type h; }; class bsh_magic_search_heap { public: enum { Safe = 0 }; class color_ref { public: color_ref(unsigned char *b, unsigned char o): base(b), offset(o*2) { } color get_color() const { return color(((*base) >> offset) & 3U); } void set_color(color c) { *base = (*base & ~(3U << offset)) | (c << offset); } bool is_white() const { return get_color() == WHITE; } private: unsigned char *base; unsigned char offset; }; bsh_magic_search_heap(size_t s) { size_ = s; h = new unsigned char[size_]; memset(h, WHITE, size_); } ~bsh_magic_search_heap() { delete[] h; } color_ref get_color_ref(const state*& s) { size_t ha = s->hash(); return color_ref(&(h[ha%size_]), ha%4); } void add_new_state(const state* s, color c) { color_ref cr(get_color_ref(s)); assert(cr.is_white()); cr.set_color(c); } void pop_notify(const state* s) const { s->destroy(); } bool has_been_visited(const state* s) const { size_t ha = s->hash(); return color((h[ha%size_] >> ((ha%4)*2)) & 3U) != WHITE; } enum { Has_Size = 0 }; private: size_t size_; unsigned char* h; }; } // anonymous emptiness_check_ptr explicit_magic_search(const const_tgba_ptr& a, option_map o) { return std::make_shared>(a, 0, o); } emptiness_check_ptr bit_state_hashing_magic_search(const const_tgba_ptr& a, size_t size, option_map o) { return std::make_shared>(a, size, o); } emptiness_check_ptr magic_search(const const_tgba_ptr& a, option_map o) { size_t size = o.get("bsh"); if (size) return bit_state_hashing_magic_search(a, size, o); return explicit_magic_search(a, o); } }