// -*- coding: utf-8 -*- // Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire // de Recherche et Développement de l'Epita (LRDE). // Copyright (C) 2003, 2004, 2005, 2006 Laboratoire // d'Informatique de Paris 6 (LIP6), département Systèmes Répartis // Coopératifs (SRC), Université Pierre et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include "misc/hash.hh" #include "misc/bddlt.hh" #include "misc/minato.hh" #include "ltlast/visitor.hh" #include "ltlast/allnodes.hh" #include "ltlvisit/nenoform.hh" #include "ltlvisit/tostring.hh" #include "ltlvisit/postfix.hh" #include "ltlvisit/apcollect.hh" #include "ltlvisit/mark.hh" #include "ltlvisit/tostring.hh" #include #include #include #include "ltl2tgba_fm.hh" #include "tgba/bddprint.hh" #include "tgbaalgos/sccinfo.hh" //#include "tgbaalgos/dotty.hh" #include "priv/acccompl.hh" namespace spot { using namespace ltl; namespace { // This should only be called on And formulae and return // the set of subformula that are implied by the formulas // already in the And. // If f = Ga & (b R c) & G(d & (e R (g R h)) & Xj) & Xk this // returns the set {a, # implied by Ga // c, # implied by b R c // d, e R (g R h), g R h, h, Xj # implied by G(d & ...) // } // Leave recurring to false on first call. typedef std::set formula_set; void implied_subformulae(const formula* in, formula_set& rec, bool recurring = false) { const multop* f = is_And(in); if (!f) { // Only recursive calls should be made with an operator that // is not And. assert(recurring); rec.insert(in); return; } unsigned s = f->size(); for (unsigned n = 0; n < s; ++n) { const formula* sub = f->nth(n); // Recurring is set if we are under "G(...)" or "0 R (...)" // or (...) W 0". if (recurring) rec.insert(sub); if (const unop* g = is_G(sub)) { implied_subformulae(g->child(), rec, true); } else if (const binop* w = is_W(sub)) { // f W 0 = Gf if (w->second() == constant::false_instance()) implied_subformulae(w->first(), rec, true); } else while (const binop* b = is_binop(sub, binop::R, binop::M)) { // in 'f R g' and 'f M g' always evaluate 'g'. sub = b->second(); if (b->first() == constant::false_instance()) { assert(b->op() == binop::R); // because 0 M g = 0 // 0 R f = Gf implied_subformulae(sub, rec, true); break; } rec.insert(sub); } } } class translate_dict; class ratexp_to_dfa { typedef typename tgba_digraph::namer::type namer; public: ratexp_to_dfa(translate_dict& dict); std::tuple succ(const formula* f); ~ratexp_to_dfa(); protected: typedef std::pair labelled_aut; labelled_aut translate(const formula* f); private: translate_dict& dict_; typedef std::unordered_map f2a_t; std::vector automata_; f2a_t f2a_; }; // Helper dictionary. We represent formulae using BDDs to // simplify them, and then translate BDDs back into formulae. // // The name of the variables are inspired from Couvreur's FM paper. // "a" variables are promises (written "a" in the paper) // "next" variables are X's operands (the "r_X" variables from the paper) // "var" variables are atomic propositions. class translate_dict { public: translate_dict(const bdd_dict_ptr& dict, ltl_simplifier* ls, bool exprop, bool single_acc) : dict(dict), ls(ls), a_set(bddtrue), var_set(bddtrue), next_set(bddtrue), transdfa(*this), exprop(exprop), single_acc(single_acc) { } ~translate_dict() { fv_map::iterator i; for (auto& i: next_map) i.first->destroy(); dict->unregister_all_my_variables(this); flagged_formula_to_bdd_map::iterator j = ltl_bdd_.begin(); // Advance the iterator before destroying previous value. while (j != ltl_bdd_.end()) j++->first.f->destroy(); } bdd_dict_ptr dict; ltl_simplifier* ls; mark_tools mt; typedef bdd_dict::fv_map fv_map; typedef std::vector vf_map; fv_map next_map; ///< Maps "Next" variables to BDD variables vf_map next_formula_map; ///< Maps BDD variables to "Next" variables bdd a_set; bdd var_set; bdd next_set; ratexp_to_dfa transdfa; bool exprop; bool single_acc; enum translate_flags { flags_none = 0, // Keep these bits slightly apart as we will use them as-is // in the hash function for flagged_formula. flags_mark_all = (1<<10), flags_recurring = (1<<14), }; struct flagged_formula { const formula* f; unsigned flags; // a combination of translate_flags bool operator==(const flagged_formula& other) const { return this->f == other.f && this->flags == other.flags; } }; struct flagged_formula_hash: public std::unary_function { size_t operator()(const flagged_formula& that) const { return that.f->hash() ^ size_t(that.flags); } }; struct translated { bdd symbolic; bool has_rational:1; bool has_marked:1; }; typedef std::unordered_map flagged_formula_to_bdd_map; private: flagged_formula_to_bdd_map ltl_bdd_; public: int register_proposition(const formula* f) { int num = dict->register_proposition(f, this); var_set &= bdd_ithvar(num); return num; } int register_a_variable(const formula* f) { if (single_acc) { int num = dict->register_acceptance_variable (ltl::constant::true_instance(), this); a_set &= bdd_ithvar(num); return num; } // A promise of 'x', noted P(x) is pretty much like the F(x) // LTL formula, it ensure that 'x' will be fulfilled (= not // promised anymore) eventually. // So a U b = ((a&Pb) W b) // a U (b U c) = (a&P(b U c)) W (b&P(c) W c) // the latter encoding may be simplified to // a U (b U c) = (a&P(c)) W (b&P(c) W c) // // Similarly // a M b = (a R (b&P(a))) // (a M b) M c = (a R (b & Pa)) R (c & P(a M b)) // = (a R (b & Pa)) R (c & P(a & b)) // // The code below therefore implement the following // rules: // P(a U b) = P(b) // P(F(a)) = P(a) // P(a M b) = P(a & b) // // The latter rule INCORRECTLY appears as P(a M b)=P(a) // in section 3.5 of // "LTL translation improvements in Spot 1.0", // A. Duret-Lutz. IJCCBS 5(1/2):31-54, March 2014. // and was unfortunately implemented this way until Spot // 1.2.4. A counterexample is given by the formula // G(Fa & ((a M b) U ((c U !d) M d))) // that was found by Joachim Klein. Here P((c U !d) M d) // and P(c U !d) should not both be simplified to P(!d). for (;;) { if (const binop* b = is_binop(f)) { binop::type op = b->op(); if (op == binop::U) { // P(a U b) = P(b) f = b->second(); } else if (op == binop::M) { // P(a M b) = P(a & b) const formula* g = multop::instance(multop::And, b->first()->clone(), b->second()->clone()); int num = dict->register_acceptance_variable(g, this); a_set &= bdd_ithvar(num); g->destroy(); return num; } else { break; } } else if (const unop* u = is_unop(f, unop::F)) { // P(F(a)) = P(a) f = u->child(); } else { break; } } int num = dict->register_acceptance_variable(f, this); a_set &= bdd_ithvar(num); return num; } int register_next_variable(const formula* f) { int num; // Do not build a Next variable that already exists. fv_map::iterator sii = next_map.find(f); if (sii != next_map.end()) { num = sii->second; } else { f = f->clone(); num = dict->register_anonymous_variables(1, this); next_map[f] = num; next_formula_map.resize(bdd_varnum()); next_formula_map[num] = f; } next_set &= bdd_ithvar(num); return num; } std::ostream& dump(std::ostream& os) const { fv_map::const_iterator fi; os << "Next Variables:" << std::endl; for (auto& fi: next_map) { os << " " << fi.second << ": Next["; to_string(fi.first, os) << ']' << std::endl; } os << "Shared Dict:" << std::endl; dict->dump(os); return os; } const formula* var_to_formula(int var) const { const bdd_dict::bdd_info& i = dict->bdd_map[var]; if (i.type != bdd_dict::anon) { assert(i.type == bdd_dict::acc || i.type == bdd_dict::var); return i.f->clone(); } const formula* f = next_formula_map[var]; assert(f); return f->clone(); } bdd boolean_to_bdd(const formula* f) { bdd res = ls->as_bdd(f); var_set &= bdd_support(res); return res; } const formula* conj_bdd_to_formula(bdd b, multop::type op = multop::And) const { if (b == bddfalse) return constant::false_instance(); multop::vec* v = new multop::vec; while (b != bddtrue) { int var = bdd_var(b); const formula* res = var_to_formula(var); bdd high = bdd_high(b); if (high == bddfalse) { res = unop::instance(unop::Not, res); b = bdd_low(b); } else { assert(bdd_low(b) == bddfalse); b = high; } assert(b != bddfalse); v->push_back(res); } return multop::instance(op, v); } const formula* conj_bdd_to_sere(bdd b) const { return conj_bdd_to_formula(b, multop::AndRat); } const formula* bdd_to_formula(bdd f) { if (f == bddfalse) return constant::false_instance(); multop::vec* v = new multop::vec; minato_isop isop(f); bdd cube; while ((cube = isop.next()) != bddfalse) v->push_back(conj_bdd_to_formula(cube)); return multop::instance(multop::Or, v); } const formula* bdd_to_sere(bdd f) { if (f == bddfalse) return constant::false_instance(); multop::vec* v = new multop::vec; minato_isop isop(f); bdd cube; while ((cube = isop.next()) != bddfalse) v->push_back(conj_bdd_to_sere(cube)); return multop::instance(multop::OrRat, v); } const translated& ltl_to_bdd(const formula* f, bool mark_all, bool recurring = false); }; #ifdef __GNUC__ # define unused __attribute__((unused)) #else # define unused #endif // Debugging function. static unused std::ostream& trace_ltl_bdd(const translate_dict& d, bdd f) { std::cerr << "Displaying BDD "; bdd_print_set(std::cerr, d.dict, f) << ":\n"; minato_isop isop(f); bdd cube; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, d.next_set); bdd dest_bdd = bdd_existcomp(cube, d.next_set); const formula* dest = d.conj_bdd_to_formula(dest_bdd); bdd_print_set(std::cerr, d.dict, label) << " => "; bdd_print_set(std::cerr, d.dict, dest_bdd) << " = " << to_string(dest) << '\n'; dest->destroy(); } return std::cerr; } // Gather all promises of a formula. These are the // right-hand sides of U or F operators. class ltl_promise_visitor: public postfix_visitor { public: ltl_promise_visitor(translate_dict& dict) : dict_(dict), res_(bddtrue) { } virtual ~ltl_promise_visitor() { } bdd result() const { return res_; } using postfix_visitor::doit; virtual void doit(const unop* node) { if (node->op() == unop::F) res_ &= bdd_ithvar(dict_.register_a_variable(node->child())); } virtual void doit(const binop* node) { if (node->op() == binop::U) res_ &= bdd_ithvar(dict_.register_a_variable(node->second())); } private: translate_dict& dict_; bdd res_; }; bdd translate_ratexp(const formula* f, translate_dict& dict, const formula* to_concat = 0); // Rewrite rule for rational operators. class ratexp_trad_visitor: public visitor { public: // negated should only be set for constants or atomic properties ratexp_trad_visitor(translate_dict& dict, const formula* to_concat = 0) : dict_(dict), to_concat_(to_concat) { } virtual ~ratexp_trad_visitor() { if (to_concat_) to_concat_->destroy(); } bdd result() const { return res_; } bdd next_to_concat() { // Encoding X[*0] when there is nothing to concatenate is a // way to ensure that we distinguish the rational formula "a" // (encoded as "a&X[*0]") from the rational formula "a;[*]" // (encoded as "a&X[*]"). // // It's important that when we do "a && (a;[*])" we do not get // "a;[*]" as it would occur if we had simply encoded "a" as // "a". if (!to_concat_) to_concat_ = constant::empty_word_instance(); int x = dict_.register_next_variable(to_concat_); return bdd_ithvar(x); } bdd now_to_concat() { if (to_concat_ && to_concat_ != constant::empty_word_instance()) return recurse(to_concat_); return bddfalse; } // Append to_concat_ to all Next variables in IN. bdd concat_dests(bdd in) { if (!to_concat_) return in; minato_isop isop(in); bdd cube; bdd out = bddfalse; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, dict_.next_set); bdd dest_bdd = bdd_existcomp(cube, dict_.next_set); const formula* dest = dict_.conj_bdd_to_sere(dest_bdd); if (dest == constant::empty_word_instance()) { out |= label & next_to_concat(); } else { const formula* dest2 = multop::instance(multop::Concat, dest, to_concat_->clone()); if (dest2 != constant::false_instance()) { int x = dict_.register_next_variable(dest2); dest2->destroy(); out |= label & bdd_ithvar(x); } } } return out; } void visit(const atomic_prop* node) { res_ = bdd_ithvar(dict_.register_proposition(node)); res_ &= next_to_concat(); } void visit(const constant* node) { switch (node->val()) { case constant::True: res_ = next_to_concat(); return; case constant::False: res_ = bddfalse; return; case constant::EmptyWord: res_ = now_to_concat(); return; } SPOT_UNREACHABLE(); } void visit(const unop* node) { switch (node->op()) { case unop::F: case unop::G: case unop::X: case unop::Finish: case unop::Closure: case unop::NegClosure: case unop::NegClosureMarked: SPOT_UNREACHABLE(); // Because not rational operator case unop::Not: { // Not can only appear in front of Boolean // expressions. const formula* f = node->child(); assert(f->is_boolean()); res_ = !recurse(f); res_ &= next_to_concat(); return; } } SPOT_UNREACHABLE(); } void visit(const bunop* bo) { const formula* f; unsigned min = bo->min(); unsigned max = bo->max(); assert(max > 0); unsigned min2 = (min == 0) ? 0 : (min - 1); unsigned max2 = (max == bunop::unbounded) ? bunop::unbounded : (max - 1); bunop::type op = bo->op(); switch (op) { case bunop::Star: f = bunop::instance(op, bo->child()->clone(), min2, max2); if (to_concat_) f = multop::instance(multop::Concat, f, to_concat_->clone()); if (!bo->child()->accepts_eword()) { // f*;g -> f;f*;g | g // // If f does not accept the empty word, we can easily // add "f*;g" as to_concat_ when translating f. res_ = recurse(bo->child(), f); if (min == 0) res_ |= now_to_concat(); } else { // if "f" accepts the empty word, doing the above would // lead to an infinite loop: // f*;g -> f;f*;g | g // f;f*;g -> f*;g | ... // // So we do it in three steps: // 1. translate f, // 2. append f*;g to all destinations // 3. add |g res_ = recurse(bo->child()); // f*;g -> f;f*;g minato_isop isop(res_); bdd cube; res_ = bddfalse; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, dict_.next_set); bdd dest_bdd = bdd_existcomp(cube, dict_.next_set); const formula* dest = dict_.conj_bdd_to_sere(dest_bdd); int x; if (dest == constant::empty_word_instance()) { x = dict_.register_next_variable(f); res_ |= label & bdd_ithvar(x); } else { const formula* dest2 = multop::instance(multop::Concat, dest, f->clone()); if (dest2 != constant::false_instance()) { x = dict_.register_next_variable(dest2); dest2->destroy(); res_ |= label & bdd_ithvar(x); } } } f->destroy(); res_ |= now_to_concat(); } return; } SPOT_UNREACHABLE(); } void visit(const binop*) { SPOT_UNREACHABLE(); // Not a rational operator } void visit(const multop* node) { multop::type op = node->op(); switch (op) { case multop::AndNLM: { unsigned s = node->size(); multop::vec* final = new multop::vec; multop::vec* non_final = new multop::vec; for (unsigned n = 0; n < s; ++n) { const formula* f = node->nth(n); if (f->accepts_eword()) final->push_back(f->clone()); else non_final->push_back(f->clone()); } if (non_final->empty()) { delete non_final; // (a* & b*);c = (a*|b*);c const formula* f = multop::instance(multop::OrRat, final); res_ = recurse_and_concat(f); f->destroy(); break; } if (!final->empty()) { // let F_i be final formulae // N_i be non final formula // (F_1 & ... & F_n & N_1 & ... & N_m) // = (F_1 | ... | F_n);[*] && (N_1 & ... & N_m) // | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*] const formula* f = multop::instance(multop::OrRat, final); const formula* n = multop::instance(multop::AndNLM, non_final); const formula* t = bunop::instance(bunop::Star, constant::true_instance()); const formula* ft = multop::instance(multop::Concat, f->clone(), t->clone()); const formula* nt = multop::instance(multop::Concat, n->clone(), t); const formula* ftn = multop::instance(multop::AndRat, ft, n); const formula* fnt = multop::instance(multop::AndRat, f, nt); const formula* all = multop::instance(multop::OrRat, ftn, fnt); res_ = recurse_and_concat(all); all->destroy(); break; } // No final formula. delete final; for (unsigned n = 0; n < s; ++n) (*non_final)[n]->destroy(); delete non_final; // Translate N_1 & N_2 & ... & N_n into // N_1 && (N_2;[*]) && ... && (N_n;[*]) // | (N_1;[*]) && N_2 && ... && (N_n;[*]) // | (N_1;[*]) && (N_2;[*]) && ... && N_n const formula* star = bunop::instance(bunop::Star, constant::true_instance()); multop::vec* disj = new multop::vec; for (unsigned n = 0; n < s; ++n) { multop::vec* conj = new multop::vec; for (unsigned m = 0; m < s; ++m) { const formula* f = node->nth(m)->clone(); if (n != m) f = multop::instance(multop::Concat, f, star->clone()); conj->push_back(f); } disj->push_back(multop::instance(multop::AndRat, conj)); } star->destroy(); const formula* all = multop::instance(multop::OrRat, disj); res_ = recurse_and_concat(all); all->destroy(); break; } case multop::AndRat: { unsigned s = node->size(); res_ = bddtrue; for (unsigned n = 0; n < s; ++n) { bdd res = recurse(node->nth(n)); // trace_ltl_bdd(dict_, res); res_ &= res; } //std::cerr << "Pre-Concat:" << std::endl; //trace_ltl_bdd(dict_, res_); // If we have translated (a* && b*) in (a* && b*);c, we // have to append ";c" to all destinations. res_ = concat_dests(res_); if (node->accepts_eword()) res_ |= now_to_concat(); if (op == multop::AndNLM) node->destroy(); break; } case multop::OrRat: { res_ = bddfalse; unsigned s = node->size(); for (unsigned n = 0; n < s; ++n) res_ |= recurse_and_concat(node->nth(n)); break; } case multop::Concat: { multop::vec* v = new multop::vec; unsigned s = node->size(); v->reserve(s); for (unsigned n = 1; n < s; ++n) v->push_back(node->nth(n)->clone()); if (to_concat_) v->push_back(to_concat_->clone()); res_ = recurse(node->nth(0), multop::instance(multop::Concat, v)); break; } case multop::Fusion: { assert(node->size() >= 2); // the head bdd res = recurse(node->nth(0)); // the tail const formula* tail = node->all_but(0); bdd tail_bdd; bool tail_computed = false; //trace_ltl_bdd(dict_, res); minato_isop isop(res); bdd cube; res_ = bddfalse; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, dict_.next_set); bdd dest_bdd = bdd_existcomp(cube, dict_.next_set); const formula* dest = dict_.conj_bdd_to_sere(dest_bdd); if (dest->accepts_eword()) { // The destination is a final state. Make sure we // can also exit if tail is satisfied. if (!tail_computed) { tail_bdd = recurse(tail); tail_computed = true; } res_ |= concat_dests(label & tail_bdd); } // If the destination is not 0 or [*0], it means it // can have successors. Fusion the tail and append // anything to concatenate. if (dest->kind() != formula::Constant || dest == ltl::constant::true_instance()) { const formula* dest2 = multop::instance(multop::Fusion, dest, tail->clone()); if (to_concat_) dest2 = multop::instance(multop::Concat, dest2, to_concat_->clone()); if (dest2 != constant::false_instance()) { int x = dict_.register_next_variable(dest2); dest2->destroy(); res_ |= label & bdd_ithvar(x); } } } tail->destroy(); break; } case multop::And: case multop::Or: SPOT_UNREACHABLE(); // Not a rational operator } } bdd recurse(const formula* f, const formula* to_concat = 0) { return translate_ratexp(f, dict_, to_concat); } bdd recurse_and_concat(const formula* f) { return translate_ratexp(f, dict_, to_concat_ ? to_concat_->clone() : 0); } private: translate_dict& dict_; bdd res_; const formula* to_concat_; }; bdd translate_ratexp(const formula* f, translate_dict& dict, const formula* to_concat) { // static unsigned indent = 0; // for (unsigned i = indent; i > 0; --i) // std::cerr << "| "; // std::cerr << "translate_ratexp[" << to_string(f); // if (to_concat) // std::cerr << ", " << to_string(to_concat); // std::cerr << ']' << std::endl; // ++indent; bdd res; if (!f->is_boolean()) { ratexp_trad_visitor v(dict, to_concat); f->accept(v); res = v.result(); } else { res = dict.boolean_to_bdd(f); // See comment for similar code in next_to_concat. if (!to_concat) to_concat = constant::empty_word_instance(); int x = dict.register_next_variable(to_concat); res &= bdd_ithvar(x); to_concat->destroy(); } // --indent; // for (unsigned i = indent; i > 0; --i) // std::cerr << "| "; // std::cerr << "\\ "; // bdd_print_set(std::cerr, dict.dict, res) << std::endl; return res; } ratexp_to_dfa::ratexp_to_dfa(translate_dict& dict) : dict_(dict) { } ratexp_to_dfa::~ratexp_to_dfa() { for (auto i: automata_) { for (auto n: i.second->names()) n->destroy(); delete i.second; } } ratexp_to_dfa::labelled_aut ratexp_to_dfa::translate(const formula* f) { assert(f->is_in_nenoform()); auto a = make_tgba_digraph(dict_.dict); auto namer = a->create_namer(); typedef std::set set_type; set_type formulae_to_translate; f->clone(); formulae_to_translate.insert(f); namer->new_state(f); //a->set_init_state(f); while (!formulae_to_translate.empty()) { // Pick one formula. const formula* now = *formulae_to_translate.begin(); formulae_to_translate.erase(formulae_to_translate.begin()); // Translate it bdd res = translate_ratexp(now, dict_); // Generate (deterministic) successors bdd var_set = bdd_existcomp(bdd_support(res), dict_.var_set); bdd all_props = bdd_existcomp(res, dict_.var_set); while (all_props != bddfalse) { bdd label = bdd_satoneset(all_props, var_set, bddtrue); all_props -= label; const formula* dest = dict_.bdd_to_sere(bdd_exist(res & label, dict_.var_set)); f2a_t::const_iterator i = f2a_.find(dest); if (i != f2a_.end() && i->second.first == nullptr) { // This state is useless. Ignore it. dest->destroy(); continue; } if (!namer->has_state(dest)) { formulae_to_translate.insert(dest); namer->new_state(dest); } else { dest->destroy(); } namer->new_transition(now, dest, label); } } // Register all known propositions for a. This may contain // proposition from other parts of the formula being translated, // but this is not really important as this automaton will be // short-lived. (Maybe it would even work without this line.) dict_.dict->register_propositions(dict_.var_set, a); //dotty_reachable(std::cerr, a); // The following code trims the automaton in a crude way by // eliminating SCCs that are not coaccessible. It does not // actually remove the states, it simply marks the corresponding // formulae as associated to the null pointer in the f2a_ map. // The method succ() interprets this as False. scc_info* sm = new scc_info(a); unsigned scc_count = sm->scc_count(); // Remember whether each SCC is coaccessible. std::vector coaccessible(scc_count); // SCC are numbered in topological order for (unsigned n = 0; n < scc_count; ++n) { // The SCC is coaccessible if any of its states // is final (i.e., it accepts [*0])... bool coacc = false; auto& st = sm->states_of(n); for (auto l: st) if (namer->get_name(l)->accepts_eword()) { coacc = true; break; } if (!coacc) { // ... or if any of its successors is coaccessible. for (auto& i: sm->succ(n)) if (coaccessible[i.dst]) { coacc = true; break; } } if (!coacc) { // Mark all formulas of this SCC as useless. for (auto f: st) f2a_.emplace(std::piecewise_construct, std::forward_as_tuple(namer->get_name(f)), std::forward_as_tuple(nullptr, nullptr)); } else { for (auto f: st) f2a_.emplace(std::piecewise_construct, std::forward_as_tuple(namer->get_name(f)), std::forward_as_tuple(a, namer)); } coaccessible[n] = coacc; } delete sm; if (coaccessible[scc_count - 1]) { automata_.emplace_back(a, namer); return labelled_aut(a, namer); } else { for (auto n: namer->names()) n->destroy(); delete namer; return labelled_aut(nullptr, nullptr); } } // FIXME: use the new tgba::succ() interface std::tuple ratexp_to_dfa::succ(const formula* f) { f2a_t::const_iterator it = f2a_.find(f); labelled_aut a; if (it != f2a_.end()) a = it->second; else a = translate(f); // If a is null, f has an empty language. if (!a.first) return std::forward_as_tuple(nullptr, nullptr, nullptr); auto namer = a.second; assert(namer->has_state(f)); auto st = a.first->state_from_number(namer->get_state(f)); return std::forward_as_tuple(a.first, namer, st); } // The rewrite rules used here are adapted from Jean-Michel // Couvreur's FM paper, augmented to support rational operators. class ltl_trad_visitor: public visitor { public: ltl_trad_visitor(translate_dict& dict, bool mark_all = false, bool exprop = false, bool recurring = false) : dict_(dict), rat_seen_(false), has_marked_(false), mark_all_(mark_all), exprop_(exprop), recurring_(recurring) { } virtual ~ltl_trad_visitor() { } void reset(bool mark_all) { rat_seen_ = false; has_marked_ = false; mark_all_ = mark_all; } bdd result() const { return res_; } const translate_dict& get_dict() const { return dict_; } bool has_rational() const { return rat_seen_; } bool has_marked() const { return has_marked_; } void visit(const atomic_prop* node) { res_ = bdd_ithvar(dict_.register_proposition(node)); } void visit(const constant* node) { switch (node->val()) { case constant::True: res_ = bddtrue; return; case constant::False: res_ = bddfalse; return; case constant::EmptyWord: SPOT_UNIMPLEMENTED(); } SPOT_UNREACHABLE(); } void visit(const unop* node) { unop::type op = node->op(); switch (op) { case unop::F: { // r(Fy) = r(y) + a(y)X(Fy) if not recurring // r(Fy) = r(y) + a(y) if recurring (see comment in G) const formula* child = node->child(); bdd y = recurse(child); bdd a = bdd_ithvar(dict_.register_a_variable(child)); if (!recurring_) a &= bdd_ithvar(dict_.register_next_variable(node)); res_ = y | a; break; } case unop::G: { // Couvreur's paper suggests that we optimize GFy // as // r(GFy) = (r(y) + a(y))X(GFy) // instead of // r(GFy) = (r(y) + a(y)X(Fy)).X(GFy) // but this is just a particular case // of the "merge all states with the same // symbolic rewriting" optimization we do later. // (r(Fy).r(GFy) and r(GFy) have the same symbolic // rewriting, see Fig.6 in Duret-Lutz's VECOS'11 // paper for an illustration.) // // We used to keep things simple and not implement this // step, that does not change the result. However it // turns out that this extra optimization significantly // speeds up (≈×2) the translation of formulas of the // form GFa & GFb & ... GFz // // Unfortunately, our rewrite rules will put such a // formula as G(Fa & Fb & ... Fz) which has a different // form. We could encode specifically // r(G(Fa & Fb & c)) = // (r(a)+a(a))(r(b)+a(b))r(c)X(G(Fa & Fb & c)) // but that would be lots of special cases for G. // And if we do it for G, why not for R? // // Here we generalize this trick by propagating // to "recurring" information to subformulas // and letting them decide. // r(Gy) = r(y)X(Gy) int x = dict_.register_next_variable(node); bdd y = recurse(node->child(), /* recurring = */ true); res_ = y & bdd_ithvar(x); break; } case unop::Not: { // r(!y) = !r(y) res_ = bdd_not(recurse(node->child())); break; } case unop::X: { // r(Xy) = Next[y] // r(X(a&b&c)) = Next[a]&Next[b]&Next[c] // r(X(a|b|c)) = Next[a]|Next[b]|Next[c] // // The special case for And is to that // (p&XF!p)|(!p&XFp)|X(Fp&F!p) (1) // get translated as // (p&XF!p)|(!p&XFp)|XFp&XF!p (2) // and then automatically reduced to // (p&XF!p)|(!p&XFp) // // Formula (2) appears as an example of Boolean // simplification in Wring, but our LTL rewriting // rules tend to rewrite it as (1). // // The special case for Or follows naturally, but it's // effect is less clear. Benchmarks show that it // reduces the number of states and transitions, but it // increases the number of non-deterministic states... const formula* y = node->child(); if (const multop* m = is_And(y)) { res_ = bddtrue; unsigned s = m->size(); for (unsigned n = 0; n < s; ++n) { int x = dict_.register_next_variable(m->nth(n)); res_ &= bdd_ithvar(x); } } #if 0 else if (const multop* m = is_Or(y)) { res_ = bddfalse; unsigned s = m->size(); for (unsigned n = 0; n < s; ++n) { int x = dict_.register_next_variable(m->nth(n)); res_ |= bdd_ithvar(x); } } #endif else { int x = dict_.register_next_variable(y); res_ = bdd_ithvar(x); } break; } case unop::Closure: { // rat_seen_ = true; const formula* f = node->child(); auto p = dict_.transdfa.succ(f); res_ = bddfalse; auto aut = std::get<0>(p); auto namer = std::get<1>(p); auto st = std::get<2>(p); if (!aut) break; for (auto i: aut->succ(st)) { bdd label = i->current_condition(); state* s = i->current_state(); const formula* dest = namer->get_name(aut->state_number(s)); if (dest->accepts_eword()) { res_ |= label; } else { const formula* dest2 = unop::instance(op, dest->clone()); if (dest2 == constant::false_instance()) continue; int x = dict_.register_next_variable(dest2); dest2->destroy(); res_ |= label & bdd_ithvar(x); } } } break; case unop::NegClosureMarked: has_marked_ = true; case unop::NegClosure: rat_seen_ = true; { if (mark_all_) { op = unop::NegClosureMarked; has_marked_ = true; } const formula* f = node->child(); auto p = dict_.transdfa.succ(f); res_ = bddtrue; auto aut = std::get<0>(p); auto namer = std::get<1>(p); auto st = std::get<2>(p); if (!aut) break; res_ = bddfalse; bdd missing = bddtrue; for (auto i: aut->succ(st)) { bdd label = i->current_condition(); state* s = i->current_state(); const formula* dest = namer->get_name(aut->state_number(s)); missing -= label; if (!dest->accepts_eword()) { const formula* dest2 = unop::instance(op, dest->clone()); if (dest2 == constant::false_instance()) continue; int x = dict_.register_next_variable(dest2); dest2->destroy(); res_ |= label & bdd_ithvar(x); } } res_ |= missing & // stick X(1) to preserve determinism. bdd_ithvar(dict_.register_next_variable (constant::true_instance())); //trace_ltl_bdd(dict_, res_); } break; case unop::Finish: SPOT_UNIMPLEMENTED(); } } void visit(const bunop*) { SPOT_UNREACHABLE(); // Not an LTL operator } void visit(const binop* node) { binop::type op = node->op(); switch (op) { // r(f1 logical-op f2) = r(f1) logical-op r(f2) case binop::Xor: case binop::Implies: case binop::Equiv: // These operators should only appear in Boolean formulas, // which must have been dealt with earlier (in // translate_dict::ltl_to_bdd()). SPOT_UNREACHABLE(); case binop::U: { bdd f1 = recurse(node->first()); bdd f2 = recurse(node->second()); // r(f1 U f2) = r(f2) + a(f2)r(f1)X(f1 U f2) if not recurring // r(f1 U f2) = r(f2) + a(f2)r(f1) if recurring f1 &= bdd_ithvar(dict_.register_a_variable(node->second())); if (!recurring_) f1 &= bdd_ithvar(dict_.register_next_variable(node)); res_ = f2 | f1; break; } case binop::W: { // r(f1 W f2) = r(f2) + r(f1)X(f1 W f2) if not recurring // r(f1 W f2) = r(f2) + r(f1) if recurring // // also f1 W 0 = G(f1), so we can enable recurring on f1 bdd f1 = recurse(node->first(), node->second() == constant::false_instance()); bdd f2 = recurse(node->second()); if (!recurring_) f1 &= bdd_ithvar(dict_.register_next_variable(node)); res_ = f2 | f1; break; } case binop::R: { // r(f2) is in factor, so we can propagate the recurring_ flag. // if f1=false, we can also turn it on (0 R f = Gf). res_ = recurse(node->second(), recurring_ || node->first() == constant::false_instance()); // r(f1 R f2) = r(f2)(r(f1) + X(f1 R f2)) if not recurring // r(f1 R f2) = r(f2) if recurring if (recurring_) break; bdd f1 = recurse(node->first()); res_ &= f1 | bdd_ithvar(dict_.register_next_variable(node)); break; } case binop::M: { res_ = recurse(node->second(), recurring_); bdd f1 = recurse(node->first()); // r(f1 M f2) = r(f2)(r(f1) + a(f1&f2)X(f1 M f2)) if not recurring // r(f1 M f2) = r(f2)(r(f1) + a(f1&f2)) if recurring // // Note that the rule above differs from the one given // in Figure 2 of // "LTL translation improvements in Spot 1.0", // A. Duret-Lutz. IJCCBS 5(1/2):31-54, March 2014. // Both rules should be OK, but this one is a better fit // to the promises simplifications performed in // register_a_variable() (see comments in this function). // We do not want a U (c M d) to generate two different // promises. Generating c&d also makes the output similar // to what we would get with the equivalent a U (d U (c & d)). // // Here we just appear to emit a(f1 M f2) and the conversion // to a(f1&f2) is done by register_a_variable(). bdd a = bdd_ithvar(dict_.register_a_variable(node)); if (!recurring_) a &= bdd_ithvar(dict_.register_next_variable(node)); res_ &= f1 | a; break; } case binop::EConcatMarked: has_marked_ = true; /* fall through */ case binop::EConcat: rat_seen_ = true; { // Recognize f2 on transitions going to destinations // that accept the empty word. bdd f2 = recurse(node->second()); bdd f1 = translate_ratexp(node->first(), dict_); res_ = bddfalse; if (mark_all_) { op = binop::EConcatMarked; has_marked_ = true; } if (exprop_) { bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set); bdd all_props = bdd_existcomp(f1, dict_.var_set); while (all_props != bddfalse) { bdd label = bdd_satoneset(all_props, var_set, bddtrue); all_props -= label; const formula* dest = dict_.bdd_to_sere(bdd_exist(f1 & label, dict_.var_set)); const formula* dest2 = binop::instance(op, dest, node->second()->clone()); if (dest2 != constant::false_instance()) { int x = dict_.register_next_variable(dest2); dest2->destroy(); res_ |= label & bdd_ithvar(x); } if (dest->accepts_eword()) res_ |= label & f2; } } else { minato_isop isop(f1); bdd cube; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, dict_.next_set); bdd dest_bdd = bdd_existcomp(cube, dict_.next_set); const formula* dest = dict_.conj_bdd_to_sere(dest_bdd); if (dest == constant::empty_word_instance()) { res_ |= label & f2; } else { const formula* dest2 = binop::instance(op, dest, node->second()->clone()); if (dest2 != constant::false_instance()) { int x = dict_.register_next_variable(dest2); dest2->destroy(); res_ |= label & bdd_ithvar(x); } if (dest->accepts_eword()) res_ |= label & f2; } } } } break; case binop::UConcat: { // Transitions going to destinations accepting the empty // word should recognize f2, and the automaton for f1 // should be understood as universal. // // The crux of this translation (the use of implication, // and the interpretation as a universal automaton) was // explained to me (adl) by Felix Klaedtke. bdd f2 = recurse(node->second()); bdd f1 = translate_ratexp(node->first(), dict_); res_ = bddtrue; bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set); bdd all_props = bdd_existcomp(f1, dict_.var_set); while (all_props != bddfalse) { bdd one_prop_set = bddtrue; if (exprop_) one_prop_set = bdd_satoneset(all_props, var_set, bddtrue); all_props -= one_prop_set; minato_isop isop(f1 & one_prop_set); bdd cube; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, dict_.next_set); bdd dest_bdd = bdd_existcomp(cube, dict_.next_set); const formula* dest = dict_.conj_bdd_to_sere(dest_bdd); const formula* dest2 = binop::instance(op, dest, node->second()->clone()); bdd udest = bdd_ithvar(dict_.register_next_variable(dest2)); if (dest->accepts_eword()) udest &= f2; dest2->destroy(); res_ &= bdd_apply(label, udest, bddop_imp); } } } break; } } void visit(const multop* node) { switch (node->op()) { case multop::And: { formula_set implied; implied_subformulae(node, implied); // std::cerr << "---" << std::endl; // for (formula_set::const_iterator i = implied.begin(); // i != implied.end(); ++i) // std::cerr << to_string(*i) << std::endl; res_ = bddtrue; unsigned s = node->size(); for (unsigned n = 0; n < s; ++n) { const formula* sub = node->nth(n); // Skip implied subformula. For instance // when translating Fa & GFa, we should not // attempt to translate Fa. // // This optimization combines nicely with the // "recurring" optimization whereby GFp will be // translated as r(GFp) = (r(p) | a(p))X(GFp) // without showing Fp instead of r(GFp) = // r(Fp)X(GFp). See the comment for the translation // of G. if (implied.find(sub) != implied.end()) continue; // Propagate the recurring_ flag so that // G(Fa & Fb) get optimized. See the comment in // the case handling G. bdd res = recurse(sub, recurring_); //std::cerr << "== in And (" << to_string(sub) // << ')' << std::endl; // trace_ltl_bdd(dict_, res); res_ &= res; } //std::cerr << "=== And final" << std::endl; // trace_ltl_bdd(dict_, res_); break; } case multop::Or: { res_ = bddfalse; unsigned s = node->size(); for (unsigned n = 0; n < s; ++n) res_ |= recurse(node->nth(n)); break; } case multop::Concat: case multop::Fusion: case multop::AndNLM: case multop::AndRat: case multop::OrRat: SPOT_UNREACHABLE(); // Not an LTL operator } } bdd recurse(const formula* f, bool recurring = false) { const translate_dict::translated& t = dict_.ltl_to_bdd(f, mark_all_, recurring); rat_seen_ |= t.has_rational; has_marked_ |= t.has_marked; return t.symbolic; } private: translate_dict& dict_; bdd res_; bool rat_seen_; bool has_marked_; bool mark_all_; bool exprop_; bool recurring_; }; const translate_dict::translated& translate_dict::ltl_to_bdd(const formula* f, bool mark_all, bool recurring) { flagged_formula ff; ff.f = f; ff.flags = ((mark_all || f->is_ltl_formula()) ? flags_mark_all : flags_none) | (recurring ? flags_recurring : flags_none); flagged_formula_to_bdd_map::const_iterator i = ltl_bdd_.find(ff); if (i != ltl_bdd_.end()) return i->second; translated t; if (f->is_boolean()) { t.symbolic = boolean_to_bdd(f); t.has_rational = false; t.has_marked = false; } else { ltl_trad_visitor v(*this, mark_all, exprop, recurring); f->accept(v); t.symbolic = v.result(); t.has_rational = v.has_rational(); t.has_marked = v.has_marked(); } f->clone(); return ltl_bdd_.emplace(ff, t).first->second; } // Check whether a formula has a R, W, or G operator at its // top-level (preceding logical operators do not count). class ltl_possible_fair_loop_visitor: public visitor { public: ltl_possible_fair_loop_visitor() : res_(false) { } virtual ~ltl_possible_fair_loop_visitor() { } bool result() const { return res_; } void visit(const atomic_prop*) { } void visit(const constant*) { } void visit(const unop* node) { if (node->op() == unop::G) res_ = true; } void visit(const binop* node) { switch (node->op()) { // r(f1 logical-op f2) = r(f1) logical-op r(f2) case binop::Xor: case binop::Implies: case binop::Equiv: node->first()->accept(*this); if (!res_) node->second()->accept(*this); return; case binop::U: case binop::M: return; case binop::R: case binop::W: res_ = true; return; case binop::UConcat: case binop::EConcat: case binop::EConcatMarked: node->second()->accept(*this); // FIXME: we might need to add Acc[1] return; } SPOT_UNREACHABLE(); } void visit(const bunop*) { SPOT_UNIMPLEMENTED(); } void visit(const multop* node) { unsigned s = node->size(); for (unsigned n = 0; n < s && !res_; ++n) { node->nth(n)->accept(*this); } } private: bool res_; }; // Check whether a formula can be part of a fair loop. // Cache the result for efficiency. class possible_fair_loop_checker { public: bool check(const formula* f) { pfl_map::const_iterator i = pfl_.find(f); if (i != pfl_.end()) return i->second; ltl_possible_fair_loop_visitor v; f->accept(v); bool rel = v.result(); pfl_[f] = rel; return rel; } private: typedef std::unordered_map pfl_map; pfl_map pfl_; }; class formula_canonizer { public: formula_canonizer(translate_dict& d, bool fair_loop_approx, bdd all_promises) : fair_loop_approx_(fair_loop_approx), all_promises_(all_promises), d_(d) { // For cosmetics, register 1 initially, so the algorithm will // not register an equivalent formula first. b2f_[bddtrue] = constant::true_instance(); } ~formula_canonizer() { formula_to_bdd_map::iterator i = f2b_.begin(); while (i != f2b_.end()) // Advance the iterator before destroying previous value. i++->first->destroy(); } // This wrap translate_dict::ltl_to_bdd() for top-level formulas. // In case the formula contains SERE operators, we need to decide // if we have to mark unmarked operators, and more const translate_dict::translated& translate(const formula* f, bool* new_flag = 0) { // Use the cached result if available. formula_to_bdd_map::const_iterator i = f2b_.find(f); if (i != f2b_.end()) return i->second; if (new_flag) *new_flag = true; // Perform the actual translation. translate_dict::translated t = d_.ltl_to_bdd(f, !f->is_marked()); // std::cerr << "-----" << std::endl; // std::cerr << "Formula: " << to_string(f) << std::endl; // std::cerr << "Rational: " << t.has_rational << std::endl; // std::cerr << "Marked: " << t.has_marked << std::endl; // std::cerr << "Mark all: " << !f->is_marked() << std::endl; // std::cerr << "Transitions:" << std::endl; // trace_ltl_bdd(d_, t.symbolic); // std::cerr << "-----" << std::endl; if (t.has_rational) { bdd res = bddfalse; minato_isop isop(t.symbolic); bdd cube; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, d_.next_set); bdd dest_bdd = bdd_existcomp(cube, d_.next_set); const formula* dest = d_.conj_bdd_to_formula(dest_bdd); // Handle a Miyano-Hayashi style unrolling for // rational operators. Marked nodes correspond to // subformulae in the Miyano-Hayashi set. const formula* tmp = d_.mt.simplify_mark(dest); dest->destroy(); dest = tmp; if (dest->is_marked()) { // Make the promise that we will exit marked sets. int a = d_.register_a_variable(constant::true_instance()); label &= bdd_ithvar(a); } else { // We have no marked operators, but still // have other rational operator to check. // Start a new marked cycle. const formula* dest2 = d_.mt.mark_concat_ops(dest); dest->destroy(); dest = dest2; } // Note that simplify_mark may have changed dest. dest_bdd = bdd_ithvar(d_.register_next_variable(dest)); dest->destroy(); res |= label & dest_bdd; } t.symbolic = res; // std::cerr << "Marking rewriting:" << std::endl; // trace_ltl_bdd(v_.get_dict(), t.symbolic); } // Apply the fair-loop approximation if requested. if (fair_loop_approx_) { // If the source cannot possibly be part of a fair // loop, make all possible promises. if (fair_loop_approx_ && f != constant::true_instance() && !pflc_.check(f)) t.symbolic &= all_promises_; } // Register the reverse mapping if it is not already done. if (b2f_.find(t.symbolic) == b2f_.end()) b2f_[t.symbolic] = f; return f2b_.emplace(f->clone(), t).first->second; } const formula* canonize(const formula* f) { bool new_variable = false; bdd b = translate(f, &new_variable).symbolic; bdd_to_formula_map::iterator i = b2f_.find(b); // Since we have just translated the formula, it is // necessarily in b2f_. assert(i != b2f_.end()); if (i->second != f) { // The translated bdd maps to an already seen formula. f->destroy(); f = i->second->clone(); } return f; } bdd used_vars() { return d_.var_set; } private: // Map a representation of successors to a canonical formula. // We do this because many formulae (such as `aR(bRc)' and // `aR(bRc).(bRc)') are equivalent, and are trivially identified // by looking at the set of successors. typedef std::unordered_map bdd_to_formula_map; bdd_to_formula_map b2f_; // Map each formula to its associated bdd. This speed things up when // the same formula is translated several times, which especially // occurs when canonize() is called repeatedly inside exprop. typedef std::unordered_map > formula_to_bdd_map; formula_to_bdd_map f2b_; possible_fair_loop_checker pflc_; bool fair_loop_approx_; bdd all_promises_; translate_dict& d_; }; } typedef std::map prom_map; typedef std::unordered_map dest_map; static void fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest) { bdd conds = bdd_existcomp(label, d.var_set); bdd promises = bdd_existcomp(label, d.a_set); dest_map::iterator i = dests.find(dest); if (i == dests.end()) { dests[dest][promises] = conds; } else { i->second[promises] |= conds; dest->destroy(); } } tgba_digraph_ptr ltl_to_tgba_fm(const formula* f, const bdd_dict_ptr& dict, bool exprop, bool symb_merge, bool branching_postponement, bool fair_loop_approx, const atomic_prop_set* unobs, ltl_simplifier* simplifier) { const formula* f2; ltl_simplifier* s = simplifier; // Simplify the formula, if requested. if (s) { // This will normalize the formula regardless of the // configuration of the simplifier. f2 = s->simplify(f); } else { // Otherwise, at least normalize the formula. We want all the // negations on the atomic propositions. We also suppress // logic abbreviations such as <=>, =>, or XOR, since they // would involve negations at the BDD level. s = new ltl_simplifier(dict); f2 = s->negative_normal_form(f, false); } typedef std::set set_type; set_type formulae_to_translate; assert(dict == s->get_dict()); translate_dict d(dict, s, exprop, f->is_syntactic_persistence()); // Compute the set of all promises that can possibly occur // inside the formula. bdd all_promises = bddtrue; if (fair_loop_approx || unobs) { ltl_promise_visitor pv(d); f2->accept(pv); all_promises = pv.result(); } formula_canonizer fc(d, fair_loop_approx, all_promises); // These are used when atomic propositions are interpreted as // events. There are two kinds of events: observable events are // those used in the formula, and unobservable events or other // events that can occur at anytime. All events exclude each // other. bdd observable_events = bddfalse; bdd unobservable_events = bddfalse; if (unobs) { bdd neg_events = bddtrue; std::auto_ptr aps(atomic_prop_collect(f)); for (atomic_prop_set::const_iterator i = aps->begin(); i != aps->end(); ++i) { int p = d.register_proposition(*i); bdd pos = bdd_ithvar(p); bdd neg = bdd_nithvar(p); observable_events = (observable_events & neg) | (neg_events & pos); neg_events &= neg; } for (atomic_prop_set::const_iterator i = unobs->begin(); i != unobs->end(); ++i) { int p = d.register_proposition(*i); bdd pos = bdd_ithvar(p); bdd neg = bdd_nithvar(p); unobservable_events = ((unobservable_events & neg) | (neg_events & pos)); observable_events &= neg; neg_events &= neg; } } bdd all_events = observable_events | unobservable_events; tgba_digraph_ptr a = make_tgba_digraph(dict); auto namer = a->create_namer(); // This is in case the initial state is equivalent to true... if (symb_merge) f2 = fc.canonize(f2); formulae_to_translate.insert(f2); a->set_init_state(namer->new_state(f2)); while (!formulae_to_translate.empty()) { // Pick one formula. const formula* now = *formulae_to_translate.begin(); formulae_to_translate.erase(formulae_to_translate.begin()); // Translate it into a BDD to simplify it. const translate_dict::translated& t = fc.translate(now); bdd res = t.symbolic; // Handle exclusive events. if (unobs) { res &= observable_events; int n = d.register_next_variable(now); res |= unobservable_events & bdd_ithvar(n) & all_promises; } // We used to factor only Next and A variables while computing // prime implicants, with // minato_isop isop(res, d.next_set & d.a_set); // in order to obtain transitions with formulae of atomic // proposition directly, but unfortunately this led to strange // factorizations. For instance f U g was translated as // r(f U g) = g + a(g).r(X(f U g)).(f + g) // instead of just // r(f U g) = g + a(g).r(X(f U g)).f // Of course both formulae are logically equivalent, but the // latter is "more deterministic" than the former, so it should // be preferred. // // Therefore we now factor all variables. This may lead to more // transitions than necessary (e.g., r(f + g) = f + g will be // coded as two transitions), but we later merge all transitions // with same source/destination and acceptance conditions. This // is the goal of the `dests' hash. // // Note that this is still not optimal. For instance it is // better to encode `f U g' as // r(f U g) = g + a(g).r(X(f U g)).f.!g // because that leads to a deterministic automaton. In order // to handle this, we take the conditions of any transition // going to true (it's `g' here), and remove it from the other // transitions. // // In `exprop' mode, considering all possible combinations of // outgoing propositions generalizes the above trick. dest_map dests; // Compute all outgoing arcs. // If EXPROP is set, we will refine the symbolic // representation of the successors for all combinations of // the atomic properties involved in the formula. // VAR_SET is the set of these properties. bdd var_set = bdd_existcomp(bdd_support(res), d.var_set); // ALL_PROPS is the combinations we have yet to consider. // We used to start with `all_props = bddtrue', but it is // more efficient to start with the set of all satisfiable // variables combinations. bdd all_props = bdd_existcomp(res, d.var_set); while (all_props != bddfalse) { bdd one_prop_set = bddtrue; if (exprop) one_prop_set = bdd_satoneset(all_props, var_set, bddtrue); all_props -= one_prop_set; typedef std::map succ_map; succ_map succs; // Compute prime implicants. // The reason we use prime implicants and not bdd_satone() // is that we do not want to get any negation in front of Next // or Acc variables. We wouldn't know what to do with these. // We never added negations in front of these variables when // we built the BDD, so prime implicants will not "invent" them. // // FIXME: minato_isop is quite expensive, and I (=adl) // don't think we really care that much about getting the // smalled sum of products that minato_isop strives to // compute. Given that Next and Acc variables should // always be positive, maybe there is a faster way to // compute the successors? E.g. using bdd_satone() and // ignoring negated Next and Acc variables. minato_isop isop(res & one_prop_set); bdd cube; while ((cube = isop.next()) != bddfalse) { bdd label = bdd_exist(cube, d.next_set); bdd dest_bdd = bdd_existcomp(cube, d.next_set); const formula* dest = d.conj_bdd_to_formula(dest_bdd); // Simplify the formula, if requested. if (simplifier) { const formula* tmp = simplifier->simplify(dest); dest->destroy(); dest = tmp; // Ignore the arc if the destination reduces to false. if (dest == constant::false_instance()) continue; } // If we already know a state with the same // successors, use it in lieu of the current one. if (symb_merge) dest = fc.canonize(dest); // If we are not postponing the branching, we can // declare the outgoing transitions immediately. // Otherwise, we merge transitions with identical // label, and declare the outgoing transitions in a // second loop. if (!branching_postponement) { fill_dests(d, dests, label, dest); } else { succ_map::iterator si = succs.find(label); if (si == succs.end()) succs[label] = dest; else si->second = multop::instance(multop::Or, si->second, dest); } } if (branching_postponement) for (succ_map::const_iterator si = succs.begin(); si != succs.end(); ++si) fill_dests(d, dests, si->first, si->second); } // Check for an arc going to 1 (True). Register it first, that // way it will be explored before others during model checking. auto truef = constant::true_instance(); dest_map::const_iterator i = dests.find(truef); // COND_FOR_TRUE is the conditions of the True arc, so we // can remove them from all other arcs. It might sounds that // this is not needed when exprop is used, but in fact it is // complementary. // // Consider // f = r(X(1) R p) = p.(1 + r(X(1) R p)) // with exprop the two outgoing arcs would be // p p // f ----> 1 f ----> f // // where in fact we could output // p // f ----> 1 // // because there is no point in looping on f if we can go to 1. bdd cond_for_true = bddfalse; if (i != dests.end()) { // When translating LTL for an event-based logic with // unobservable events, the 1 state should accept all events, // even unobservable events. if (unobs && now == truef) cond_for_true = all_events; else { // There should be only one transition going to 1 (true) ... assert(i->second.size() == 1); prom_map::const_iterator j = i->second.begin(); // ... and it is not expected to make any promises (unless // fair loop approximations are used). assert(fair_loop_approx || j->first == bddtrue); cond_for_true = j->second; } if (!namer->has_state(truef)) { formulae_to_translate.insert(truef); namer->new_state(truef); } namer->new_transition(now, truef, cond_for_true, bddtrue); } // Register other transitions. for (i = dests.begin(); i != dests.end(); ++i) { const formula* dest = i->first; if (dest == truef) continue; // The cond_for_true optimization can cause some // transitions to be removed. So we have to remember // whether a formula is actually reachable. bool reachable = false; // Will this be a new state? bool seen = namer->has_state(dest); for (auto& j: i->second) { bdd cond = j.second - cond_for_true; if (cond == bddfalse) // Skip false transitions. continue; if (!reachable && !seen) namer->new_state(dest); reachable = true; namer->new_transition(now, dest, cond, j.first); } if (reachable && !seen) formulae_to_translate.insert(dest); else dest->destroy(); } } for (auto n: namer->names()) n->destroy(); delete namer; dict->register_propositions(fc.used_vars(), a); a->set_acceptance_conditions(d.a_set); // Turn all promises into real acceptance conditions. acc_compl ac(a->all_acceptance_conditions(), a->neg_acceptance_conditions()); unsigned ns = a->num_states(); for (unsigned s = 0; s < ns; ++s) for (auto& t: a->out(s)) t.acc = ac.reverse_complement(t.acc); if (!simplifier) // This should not be deleted before we have registered all propositions. delete s; return a; } }