// -*- coding: utf-8 -*- // Copyright (C) 2012, 2013, 2014, 2015 Laboratoire de Recherche et // Développement de l'Epita (LRDE). // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include "common_sys.hh" #include #include #include #include #include #include #include "error.h" #include "common_setup.hh" #include "common_range.hh" #include "common_cout.hh" #include "common_aoutput.hh" #include "ltlenv/defaultenv.hh" #include "misc/timer.hh" #include "misc/random.hh" #include "tgba/bddprint.hh" #include "tgbaalgos/randomgraph.hh" #include "tgbaalgos/canonicalize.hh" const char argp_program_doc[] = "\ Generate random connected automata.\n\n\ The automata are built over the atomic propositions named by PROPS...\n\ or, if N is a nonnegative number, using N arbitrary names.\n\ If the density is set to D, and the number of states to S, the degree\n\ of each state follows a normal distribution with mean 1+(S-1)D and\n\ variance (S-1)D(1-D). In particular, for D=0 all states have a single\n\ successor, while for D=1 all states are interconnected.\v\ Examples:\n\ \n\ This builds a random neverclaim with 4 states and labeled using the two\n\ atomic propositions \"a\" and \"b\":\n\ % randaut --spin -S4 a b\n\ \n\ This builds three random, complete, and deterministic TGBA with 5 to 10\n\ states, 1 to 3 acceptance sets, and three atomic propositions:\n\ % randaut -n 3 --hoa -S5..10 -A1..3 3\n\ "; #define OPT_SEED 1 #define OPT_STATE_ACC 2 static const argp_option options[] = { /**************************************************/ { 0, 0, 0, 0, "Generation:", 2 }, { "acc-sets", 'A', "RANGE", 0, "number of acceptance sets (0)", 0 }, { "acc-probability", 'a', "FLOAT", 0, "probability that a transition belong to one acceptance set (0.2)", 0 }, { "automata", 'n', "INT", 0, "number of automata to output (1)\n"\ "use a negative value for unbounded generation", 0 }, { "ba", 'B', 0, 0, "build a Buchi automaton (implies --acc-sets=1 --state-acc)", 0 }, { "density", 'd', "FLOAT", 0, "density of the transitions (0.2)", 0 }, { "deterministic", 'D', 0, 0, "build a complete, deterministic automaton ", 0 }, { "unique", 'u', 0, 0, "do not output the same automaton twice (same in the sense that they "\ "are isomorphic)", 0 }, { "seed", OPT_SEED, "INT", 0, "seed for the random number generator (0)", 0 }, { "states", 'S', "RANGE", 0, "number of states to output (10)", 0 }, { "state-acc", OPT_STATE_ACC, 0, 0, "use state-based acceptance", 0 }, RANGE_DOC, /**************************************************/ { 0, 0, 0, 0, "Miscellaneous options:", -1 }, { 0, 0, 0, 0, 0, 0 } }; static const struct argp_child children[] = { { &aoutput_argp, 0, 0, 3 }, { &aoutput_o_format_argp, 0, 0, 4 }, { &misc_argp, 0, 0, -1 }, { 0, 0, 0, 0 } }; typedef spot::tgba_digraph::graph_t::trans_storage_t tr_t; typedef std::set> unique_aut_t; static spot::ltl::atomic_prop_set aprops; static bool ap_count_given = false; static int opt_seed = 0; static const char* opt_seed_str = "0"; static int opt_automata = 1; static range opt_states = { 10, 10 }; static float opt_density = 0.2; static range opt_acc_sets = { 0, 0 }; static float opt_acc_prob = 0.2; static bool opt_deterministic = false; static bool opt_state_acc = false; static bool ba_wanted = false; static std::unique_ptr opt_uniq = nullptr; static int to_int(const char* s) { char* endptr; int res = strtol(s, &endptr, 10); if (*endptr) error(2, 0, "failed to parse '%s' as an integer.", s); return res; } static float to_float(const char* s) { char* endptr; float res = strtof(s, &endptr); if (*endptr) error(2, 0, "failed to parse '%s' as a float.", s); return res; } static void ba_options() { opt_acc_sets = { 1, 1 }; opt_state_acc = true; } static int parse_opt(int key, char* arg, struct argp_state* as) { // This switch is alphabetically-ordered. switch (key) { case '8': spot::enable_utf8(); break; case 'a': opt_acc_prob = to_float(arg); if (opt_acc_prob < 0.0 || opt_acc_prob > 1.0) error(2, 0, "probability of acceptance set membership " "should be between 0.0 and 1.0"); break; case 'A': opt_acc_sets = parse_range(arg); if (opt_acc_sets.min > opt_acc_sets.max) std::swap(opt_acc_sets.min, opt_acc_sets.max); if (opt_acc_sets.min < 0) error(2, 0, "number of acceptance sets should be positive"); break; case 'B': ba_options(); ba_wanted = true; break; case 'd': opt_density = to_float(arg); if (opt_density < 0.0 || opt_density > 1.0) error(2, 0, "density should be between 0.0 and 1.0"); break; case 'D': opt_deterministic = true; break; case 'n': opt_automata = to_int(arg); break; case 'S': opt_states = parse_range(arg); if (opt_states.min > opt_states.max) std::swap(opt_states.min, opt_states.max); break; case 'u': opt_uniq = std::unique_ptr(new std::set>()); break; case OPT_SEED: opt_seed = to_int(arg); opt_seed_str = arg; break; case OPT_STATE_ACC: opt_state_acc = true; break; case ARGP_KEY_ARG: // If this is the unique non-option argument, it can // be a number of atomic propositions to build. // // argp reorganizes argv[] so that options always come before // non-options. So if as->argc == as->next we know this is the // last non-option argument, and if aprops.empty() we know this // is the also the first one. if (aprops.empty() && as->argc == as->next) { char* endptr; int res = strtol(arg, &endptr, 10); if (!*endptr && res >= 0) // arg is a number { ap_count_given = true; aprops = spot::ltl::create_atomic_prop_set(res); break; } } aprops.insert(spot::ltl::default_environment::instance().require(arg)); break; default: return ARGP_ERR_UNKNOWN; } return 0; } int main(int argc, char** argv) { strcpy(F_doc, "seed number"); strcpy(L_doc, "automaton number"); setup(argv); const argp ap = { options, parse_opt, "N|PROP...", argp_program_doc, children, 0, 0 }; if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, 0, 0)) exit(err); // running 'randaut 0' is one way to generate automata using no // atomic propositions so do not complain in that case. if (aprops.empty() && !ap_count_given) error(2, 0, "No atomic proposition supplied? Run '%s --help' for usage.", program_name); if (automaton_format == Spin && opt_acc_sets.max > 1) error(2, 0, "--spin is incompatible with --acc-sets=%d..%d", opt_acc_sets.min, opt_acc_sets.max); if (ba_wanted && opt_acc_sets.min != 1 && opt_acc_sets.max != 1) error(2, 0, "--ba is incompatible with --acc-sets=%d..%d", opt_acc_sets.min, opt_acc_sets.max); spot::srand(opt_seed); auto d = spot::make_bdd_dict(); automaton_printer printer; constexpr unsigned max_trials = 10000; unsigned trials = max_trials; int automaton_num = 0; for (;;) { spot::stopwatch sw; sw.start(); int size = opt_states.min; if (size != opt_states.max) size = spot::rrand(size, opt_states.max); int accs = opt_acc_sets.min; if (accs != opt_acc_sets.max) accs = spot::rrand(accs, opt_acc_sets.max); auto aut = spot::random_graph(size, opt_density, &aprops, d, accs, opt_acc_prob, 0.5, opt_deterministic, opt_state_acc); if (opt_uniq) { auto tmp = spot::canonicalize(make_tgba_digraph(aut, spot::tgba::prop_set::all())); std::vector trans(tmp->transition_vector().begin() + 1, tmp->transition_vector().end()); if (!opt_uniq->emplace(trans).second) { --trials; if (trials == 0) error(2, 0, "failed to generate a new unique automaton" " after %d trials", max_trials); continue; } trials = max_trials; } auto runtime = sw.stop(); printer.print(aut, opt_seed_str, automaton_num, runtime, nullptr); ++automaton_num; if (opt_automata > 0 && automaton_num >= opt_automata) break; } spot::ltl::destroy_atomic_prop_set(aprops); }