// -*- coding: utf-8 -*-
// Copyright (C) 2008, 2009, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include "scc.hh"
#include "tgba/bddprint.hh"
#include "misc/escape.hh"
namespace spot
{
scc_map::scc_map(const const_twa_ptr& aut)
: aut_(aut)
{
}
scc_map::~scc_map()
{
hash_type::iterator i = h_.begin();
while (i != h_.end())
{
// Advance the iterator before deleting the key.
const state* s = i->first;
++i;
s->destroy();
}
}
unsigned
scc_map::initial() const
{
state* in = aut_->get_init_state();
int val = scc_of_state(in);
in->destroy();
return val;
}
const scc_map::succ_type&
scc_map::succ(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].succ;
}
bool
scc_map::trivial(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].trivial;
}
bool
scc_map::accepting(unsigned n) const
{
if (scc_map_[n].trivial)
return false;
return aut_->acc().accepting(acc_set_of(n));
}
const_twa_ptr
scc_map::get_aut() const
{
return aut_;
}
int
scc_map::relabel_component()
{
assert(!root_.front().states.empty());
std::list::iterator i;
int n = scc_map_.size();
for (i = root_.front().states.begin(); i != root_.front().states.end(); ++i)
{
hash_type::iterator spi = h_.find(*i);
assert(spi != h_.end());
assert(spi->first == *i);
assert(spi->second < 0);
spi->second = n;
}
scc_map_.push_back(root_.front());
return n;
}
// recursively update supp rec
bdd
scc_map::update_supp_rec(unsigned state)
{
assert(scc_map_.size() > state);
bdd& res = scc_map_[state].supp_rec;
if (res == bddfalse)
{
const succ_type& s = succ(state);
succ_type::const_iterator it;
res = scc_map_[state].supp;
for (it = s.begin(); it != s.end(); ++it)
res &= update_supp_rec(it->first) & bdd_support(it->second);
}
return res;
}
void
scc_map::build_map()
{
// Setup depth-first search from the initial state.
{
self_loops_ = 0;
state* init = aut_->get_init_state();
num_ = -1;
h_.emplace(init, num_);
root_.emplace_front(num_);
arc_acc_.push(0U);
arc_cond_.push(bddfalse);
twa_succ_iterator* iter = aut_->succ_iter(init);
iter->first();
todo_.emplace(init, iter);
}
while (!todo_.empty())
{
assert(root_.size() == arc_acc_.size());
assert(root_.size() == arc_cond_.size());
// We are looking at the next successor in SUCC.
twa_succ_iterator* succ = todo_.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
const state* curr = todo_.top().first;
// Backtrack TODO_.
todo_.pop();
// Fill rem with any component removed, so that
// remove_component() does not have to traverse the SCC
// again.
hash_type::const_iterator spi = h_.find(curr);
assert(spi != h_.end());
root_.front().states.push_front(spi->first);
// When backtracking the root of an SCC, we must also
// remove that SCC from the ARC/ROOT stacks. We must
// discard from H all reachable states from this SCC.
assert(!root_.empty());
if (root_.front().index == spi->second)
{
assert(!arc_acc_.empty());
assert(arc_cond_.size() == arc_acc_.size());
bdd cond = arc_cond_.top();
arc_cond_.pop();
arc_acc_.pop();
int num = relabel_component();
root_.pop_front();
// Record the transition between the SCC being popped
// and the previous SCC.
if (!root_.empty())
root_.front().succ.emplace(num, cond);
}
aut_->release_iter(succ);
// Do not destroy CURR: it is a key in H.
continue;
}
// We have a successor to look at.
// Fetch the values we are interested in...
const state* dest = succ->current_state();
if (!dest->compare(todo_.top().first))
++self_loops_;
auto acc = succ->current_acceptance_conditions();
bdd cond = succ->current_condition();
root_.front().supp &= bdd_support(cond);
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state?
hash_type::const_iterator spi = h_.find(dest);
if (spi == h_.end())
{
// Yes. Number it, stack it, and register its successors
// for later processing.
h_.emplace(dest, --num_);
root_.emplace_front(num_);
arc_acc_.push(acc);
arc_cond_.push(cond);
twa_succ_iterator* iter = aut_->succ_iter(dest);
iter->first();
todo_.emplace(dest, iter);
continue;
}
// We already know the state.
dest->destroy();
// Have we reached a maximal SCC?
if (spi->second >= 0)
{
int dest = spi->second;
// Record that there is a transition from this SCC to the
// dest SCC labelled with cond.
succ_type::iterator i = root_.front().succ.find(dest);
if (i == root_.front().succ.end())
root_.front().succ.emplace(dest, cond);
else
i->second |= cond;
continue;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SCC. Any such
// non-dead SCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SCC too. We are going to merge all states between
// this S1 and S2 into this SCC.
//
// This merge is easy to do because the order of the SCC in
// ROOT is descending: we just have to merge all SCCs from the
// top of ROOT that have an index lesser than the one of
// the SCC of S2 (called the "threshold").
int threshold = spi->second;
std::list states;
succ_type succs;
cond_set conds;
conds.insert(cond);
bdd supp = bddtrue;
std::set used_acc = { acc };
while (threshold > root_.front().index)
{
assert(!root_.empty());
assert(!arc_acc_.empty());
assert(arc_acc_.size() == arc_cond_.size());
acc |= root_.front().acc;
auto lacc = arc_acc_.top();
acc |= lacc;
used_acc.insert(lacc);
used_acc.insert(root_.front().useful_acc.begin(),
root_.front().useful_acc.end());
states.splice(states.end(), root_.front().states);
succs.insert(root_.front().succ.begin(),
root_.front().succ.end());
conds.insert(arc_cond_.top());
conds.insert(root_.front().conds.begin(),
root_.front().conds.end());
supp &= root_.front().supp;
root_.pop_front();
arc_acc_.pop();
arc_cond_.pop();
}
// Note that we do not always have
// threshold == root_.front().index
// after this loop, the SCC whose index is threshold might have
// been merged with a higher SCC.
// Accumulate all acceptance conditions, states, SCC
// successors, and conditions into the merged SCC.
root_.front().acc |= acc;
root_.front().states.splice(root_.front().states.end(), states);
root_.front().succ.insert(succs.begin(), succs.end());
root_.front().conds.insert(conds.begin(), conds.end());
root_.front().supp &= supp;
// This SCC is no longer trivial.
root_.front().trivial = false;
assert(!used_acc.empty());
root_.front().useful_acc.insert(used_acc.begin(), used_acc.end());
}
// recursively update supp_rec
(void) update_supp_rec(initial());
}
unsigned scc_map::scc_of_state(const state* s) const
{
hash_type::const_iterator i = h_.find(s);
assert(i != h_.end());
return i->second;
}
const scc_map::cond_set& scc_map::cond_set_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].conds;
}
bdd scc_map::ap_set_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].supp;
}
bdd scc_map::aprec_set_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].supp_rec;
}
acc_cond::mark_t scc_map::acc_set_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].acc;
}
unsigned scc_map::self_loops() const
{
return self_loops_;
}
const std::list& scc_map::states_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].states;
}
const state* scc_map::one_state_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].states.front();
}
unsigned scc_map::scc_count() const
{
return scc_map_.size();
}
const std::set&
scc_map::useful_acc_of(unsigned n) const
{
assert(scc_map_.size() > n);
return scc_map_[n].useful_acc;
}
std::ostream&
dump_scc_dot(const scc_map& m, std::ostream& out, bool verbose)
{
out << "digraph G {\n i [label=\"\", style=invis, height=0]" << std::endl;
int start = m.initial();
out << " i -> " << start << std::endl;
std::vector seen(m.scc_count());
seen[start] = true;
std::queue q;
q.push(start);
while (!q.empty())
{
int state = q.front();
q.pop();
const scc_map::cond_set& cs = m.cond_set_of(state);
std::ostringstream ostr;
ostr << state;
if (verbose)
{
size_t n = m.states_of(state).size();
ostr << " (" << n << " state";
if (n > 1)
ostr << 's';
ostr << ")\\naccs=";
escape_str(ostr, m.get_aut()->acc().format(m.acc_set_of(state)));
ostr << "\\nconds=[";
for (scc_map::cond_set::const_iterator i = cs.begin();
i != cs.end(); ++i)
{
if (i != cs.begin())
ostr << ", ";
escape_str(ostr,
bdd_format_formula(m.get_aut()->get_dict(), *i));
}
ostr << "]\\n AP=[";
escape_str(ostr,
bdd_format_sat(m.get_aut()->get_dict(),
m.ap_set_of(state)));
ostr << "]\\n APrec=[";
escape_str(ostr, bdd_format_sat(m.get_aut()->get_dict(),
m.aprec_set_of(state)));
ostr << "]\\n useful=[";
for (auto a: m.useful_acc_of(state))
m.get_aut()->acc().format(a);
ostr << ']';
}
out << " " << state << " [shape=box,"
<< (m.accepting(state) ? "style=bold," : "")
<< "label=\"" << ostr.str() << "\"]" << std::endl;
const scc_map::succ_type& succ = m.succ(state);
scc_map::succ_type::const_iterator it;
for (it = succ.begin(); it != succ.end(); ++it)
{
int dest = it->first;
bdd label = it->second;
out << " " << state << " -> " << dest
<< " [label=\"";
escape_str(out, bdd_format_formula(m.get_aut()->get_dict(), label));
out << "\"]" << std::endl;
if (seen[dest])
continue;
seen[dest] = true;
q.push(dest);
}
}
out << '}' << std::endl;
return out;
}
std::ostream&
dump_scc_dot(const const_twa_ptr& a, std::ostream& out, bool verbose)
{
scc_map m(a);
m.build_map();
return dump_scc_dot(m, out, verbose);
}
}