/* Copyright (C) 2009, 2010, 2011, 2012 Laboratoire de Recherche et
** Développement de l'Epita (LRDE).
** Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
** Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
** Université Pierre et Marie Curie.
**
** This file is part of Spot, a model checking library.
**
** Spot is free software; you can redistribute it and/or modify it
** under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 3 of the License, or
** (at your option) any later version.
**
** Spot is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
** or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
** License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see .
*/
%language "C++"
%locations
%defines
%name-prefix "ltlyy"
%debug
%error-verbose
%expect 0
%lex-param { spot::ltl::parse_error_list& error_list }
%code requires
{
#include
#include "public.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/tostring.hh"
struct minmax_t { unsigned min, max; };
}
%parse-param {spot::ltl::parse_error_list &error_list}
%parse-param {spot::ltl::environment &parse_environment}
%parse-param {const spot::ltl::formula* &result}
%union
{
std::string* str;
const spot::ltl::formula* ltl;
unsigned num;
minmax_t minmax;
}
%code {
/* ltlparse.hh and parsedecl.hh include each other recursively.
We mut ensure that YYSTYPE is declared (by the above %union)
before parsedecl.hh uses it. */
#include "parsedecl.hh"
using namespace spot::ltl;
#define missing_right_op_msg(op, str) \
error_list.push_back(parse_error(op, \
"missing right operand for \"" str "\""));
#define missing_right_op(res, op, str) \
do \
{ \
missing_right_op_msg(op, str); \
res = constant::false_instance(); \
} \
while (0);
// right is missing, so complain and use left.
#define missing_right_binop(res, left, op, str) \
do \
{ \
missing_right_op_msg(op, str); \
res = left; \
} \
while (0);
// right is missing, so complain and use false.
#define missing_right_binop_hard(res, left, op, str) \
do \
{ \
left->destroy(); \
missing_right_op(res, op, str); \
} \
while (0);
const formula*
try_recursive_parse(const std::string& str,
const ltlyy::location& location,
spot::ltl::environment& env,
bool debug,
bool sere,
spot::ltl::parse_error_list& error_list)
{
// We want to parse a U (b U c) as two until operators applied
// to the atomic propositions a, b, and c. We also want to
// parse a U (b == c) as one until operator applied to the
// atomic propositions "a" and "b == c". The only problem is
// that we do not know anything about "==" or in general about
// the syntax of atomic proposition of our users.
//
// To support that, the lexer will return "b U c" and "b == c"
// as PAR_BLOCK tokens. We then try to parse such tokens
// recursively. If, as in the case of "b U c", the block is
// successfully parsed as a formula, we return this formula.
// Otherwise, we convert the string into an atomic proposition
// (it's up to the environment to check the syntax of this
// proposition, and maybe reject it).
spot::ltl::parse_error_list suberror;
const spot::ltl::formula* f;
if (sere)
f = spot::ltl::parse_sere(str, suberror, env, debug, true);
else
f = spot::ltl::parse(str, suberror, env, debug, true);
if (suberror.empty())
return f;
if (f)
f->destroy();
f = env.require(str);
if (!f)
{
std::string s = "atomic proposition `";
s += str;
s += "' rejected by environment `";
s += env.name();
s += "'";
error_list.push_back(parse_error(location, s));
}
return f;
}
}
/* All tokens. */
%token START_LTL "LTL start marker"
%token START_LBT "LBT start marker"
%token START_SERE "SERE start marker"
%token PAR_OPEN "opening parenthesis" PAR_CLOSE "closing parenthesis"
%token PAR_BLOCK "(...) block"
%token BRA_BLOCK "{...} block"
%token BRA_BANG_BLOCK "{...}! block"
%token BRACE_OPEN "opening brace" BRACE_CLOSE "closing brace"
%token BRACE_BANG_CLOSE "closing brace-bang"
%token OP_OR "or operator" OP_XOR "xor operator"
%token OP_AND "and operator" OP_SHORT_AND "short and operator"
%token OP_IMPLIES "implication operator" OP_EQUIV "equivalent operator"
%token OP_U "until operator" OP_R "release operator"
%token OP_W "weak until operator" OP_M "strong release operator"
%token OP_F "sometimes operator" OP_G "always operator"
%token OP_X "next operator" OP_NOT "not operator"
%token OP_STAR "star operator" OP_BSTAR "bracket star operator"
%token OP_PLUS "plus operator"
%token OP_STAR_OPEN "opening bracket for star operator"
%token OP_EQUAL_OPEN "opening bracket for equal operator"
%token OP_GOTO_OPEN "opening bracket for goto operator"
%token OP_SQBKT_CLOSE "closing bracket"
%token OP_SQBKT_NUM "number for square bracket operator"
%token OP_UNBOUNDED "unbounded mark"
%token OP_SQBKT_SEP "separator for square bracket operator"
%token OP_UCONCAT "universal concat operator"
%token OP_ECONCAT "existential concat operator"
%token OP_UCONCAT_NONO "universal non-overlapping concat operator"
%token OP_ECONCAT_NONO "existential non-overlapping concat operator"
%token ATOMIC_PROP "atomic proposition"
%token OP_CONCAT "concat operator" OP_FUSION "fusion operator"
%token CONST_TRUE "constant true" CONST_FALSE "constant false"
%token END_OF_INPUT "end of formula"
%token OP_POST_NEG "negative suffix" OP_POST_POS "positive suffix"
/* Priorities. */
/* Low priority SERE-LTL binding operator. */
%right OP_UCONCAT OP_ECONCAT OP_UCONCAT_NONO OP_ECONCAT_NONO
%left OP_CONCAT
%left OP_FUSION
/* Logical operators. */
%right OP_IMPLIES OP_EQUIV
%left OP_OR
%left OP_XOR
%left OP_AND OP_SHORT_AND
/* OP_STAR can be used as an AND when occurring in some LTL formula in
Wring's syntax (so it has to be close to OP_AND), and as a Kleen
Star in SERE (so it has to be close to OP_BSTAR -- luckily
U/R/M/W/F/G/X are not used in SERE). */
%left OP_STAR
/* LTL operators. */
%right OP_U OP_R OP_M OP_W
%nonassoc OP_F OP_G
%nonassoc OP_X
/* High priority regex operator. */
%nonassoc OP_BSTAR OP_STAR_OPEN OP_PLUS OP_EQUAL_OPEN OP_GOTO_OPEN
/* Not has the most important priority after Wring's `=0' and `=1'. */
%nonassoc OP_NOT
%nonassoc OP_POST_NEG OP_POST_POS
%type subformula booleanatom sere lbtformula
%type bracedsere parenthesedsubformula
%type starargs equalargs sqbracketargs gotoargs
%destructor { delete $$; }
%destructor { $$->destroy(); }
%printer { debug_stream() << *$$; }
%printer { spot::ltl::to_string($$, debug_stream()); }
%printer { spot::ltl::to_string($$, debug_stream(), false, true); } sere bracedsere
%printer { debug_stream() << $$; }
%printer { debug_stream() << $$.min << ".." << $$.max; }
%%
result: START_LTL subformula END_OF_INPUT
{ result = $2;
YYACCEPT;
}
| START_LTL enderror
{
result = 0;
YYABORT;
}
| START_LTL subformula enderror
{
result = $2;
YYACCEPT;
}
| START_LTL emptyinput
{ YYABORT; }
| START_SERE sere END_OF_INPUT
{ result = $2;
YYACCEPT;
}
| START_SERE enderror
{
result = 0;
YYABORT;
}
| START_SERE sere enderror
{
result = $2;
YYACCEPT;
}
| START_SERE emptyinput
{ YYABORT; }
| START_LBT lbtformula END_OF_INPUT
{ result = $2;
YYACCEPT;
}
| START_LBT enderror
{
result = 0;
YYABORT;
}
| START_LBT lbtformula enderror
{
result = $2;
YYACCEPT;
}
| START_LBT emptyinput
{ YYABORT; }
emptyinput: END_OF_INPUT
{
error_list.push_back(parse_error(@$, "empty input"));
result = 0;
}
enderror: error END_OF_INPUT
{
error_list.push_back(parse_error(@1,
"ignoring trailing garbage"));
}
OP_SQBKT_SEP_unbounded: OP_SQBKT_SEP | OP_SQBKT_SEP OP_UNBOUNDED
OP_SQBKT_SEP_opt: | OP_SQBKT_SEP_unbounded
error_opt: | error
/* for [*i..j] and [=i..j] */
sqbracketargs: OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $1; $$.max = $3; }
| OP_SQBKT_NUM OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
{ $$.min = $1; $$.max = bunop::unbounded; }
| OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = 0U; $$.max = $2; }
| OP_SQBKT_SEP_opt OP_SQBKT_CLOSE
{ $$.min = 0U; $$.max = bunop::unbounded; }
| OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $$.max = $1; }
/* [->i..j] has default values that are different than [*] and [=]. */
gotoargs: OP_GOTO_OPEN OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $2; $$.max = $4; }
| OP_GOTO_OPEN OP_SQBKT_NUM OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
{ $$.min = $2; $$.max = bunop::unbounded; }
| OP_GOTO_OPEN OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = 1U; $$.max = $3; }
| OP_GOTO_OPEN OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
{ $$.min = 1U; $$.max = bunop::unbounded; }
| OP_GOTO_OPEN OP_SQBKT_CLOSE
{ $$.min = $$.max = 1U; }
| OP_GOTO_OPEN OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $$.max = $2; }
| OP_GOTO_OPEN error OP_SQBKT_CLOSE
{ error_list.push_back(parse_error(@$,
"treating this goto block as [->]"));
$$.min = $$.max = 1U; }
| OP_GOTO_OPEN error_opt END_OF_INPUT
{ error_list.push_back(parse_error(@$,
"missing closing bracket for goto operator"));
$$.min = $$.max = 0U; }
kleen_star: OP_STAR | OP_BSTAR
starargs: kleen_star
{ $$.min = 0U; $$.max = bunop::unbounded; }
| OP_PLUS
{ $$.min = 1U; $$.max = bunop::unbounded; }
| OP_STAR_OPEN sqbracketargs
{ $$ = $2; }
| OP_STAR_OPEN error OP_SQBKT_CLOSE
{ error_list.push_back(parse_error(@$,
"treating this star block as [*]"));
$$.min = 0U; $$.max = bunop::unbounded; }
| OP_STAR_OPEN error_opt END_OF_INPUT
{ error_list.push_back(parse_error(@$,
"missing closing bracket for star"));
$$.min = $$.max = 0U; }
equalargs: OP_EQUAL_OPEN sqbracketargs
{ $$ = $2; }
| OP_EQUAL_OPEN error OP_SQBKT_CLOSE
{ error_list.push_back(parse_error(@$,
"treating this equal block as [*]"));
$$.min = 0U; $$.max = bunop::unbounded; }
| OP_EQUAL_OPEN error_opt END_OF_INPUT
{ error_list.push_back(parse_error(@$,
"missing closing bracket for equal operator"));
$$.min = $$.max = 0U; }
/* The reason we use `constant::false_instance()' for error recovery
is that it isn't reference counted. (Hence it can't leak references.) */
booleanatom: ATOMIC_PROP
{
$$ = parse_environment.require(*$1);
if (! $$)
{
std::string s = "unknown atomic proposition `";
s += *$1;
s += "' in environment `";
s += parse_environment.name();
s += "'";
error_list.push_back(parse_error(@1, s));
delete $1;
YYERROR;
}
else
delete $1;
}
| ATOMIC_PROP OP_POST_POS
{
$$ = parse_environment.require(*$1);
if (! $$)
{
std::string s = "unknown atomic proposition `";
s += *$1;
s += "' in environment `";
s += parse_environment.name();
s += "'";
error_list.push_back(parse_error(@1, s));
delete $1;
YYERROR;
}
else
delete $1;
}
| ATOMIC_PROP OP_POST_NEG
{
$$ = parse_environment.require(*$1);
if (! $$)
{
std::string s = "unknown atomic proposition `";
s += *$1;
s += "' in environment `";
s += parse_environment.name();
s += "'";
error_list.push_back(parse_error(@1, s));
delete $1;
YYERROR;
}
else
delete $1;
$$ = unop::instance(unop::Not, $$);
}
| CONST_TRUE
{ $$ = constant::true_instance(); }
| CONST_FALSE
{ $$ = constant::false_instance(); }
sere: booleanatom
| OP_NOT sere
{
if ($2->is_boolean())
{
$$ = unop::instance(unop::Not, $2);
}
else
{
error_list.push_back(parse_error(@2,
"not a boolean expression: inside a SERE `!' can only "
"be applied to a Boolean expression"));
error_list.push_back(parse_error(@$,
"treating this block as false"));
$2->destroy();
$$ = constant::false_instance();
}
}
| bracedsere
| PAR_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(), true, error_list);
delete $1;
if (!$$)
YYERROR;
}
| PAR_OPEN sere PAR_CLOSE
{ $$ = $2; }
| PAR_OPEN error PAR_CLOSE
{ error_list.push_back(parse_error(@$,
"treating this parenthetical block as false"));
$$ = constant::false_instance();
}
| PAR_OPEN sere END_OF_INPUT
{ error_list.push_back(parse_error(@1 + @2,
"missing closing parenthesis"));
$$ = $2;
}
| PAR_OPEN error END_OF_INPUT
{ error_list.push_back(parse_error(@$,
"missing closing parenthesis, "
"treating this parenthetical block as false"));
$$ = constant::false_instance();
}
| sere OP_AND sere
{ $$ = multop::instance(multop::AndRat, $1, $3); }
| sere OP_AND error
{ missing_right_binop($$, $1, @2,
"length-matching and operator"); }
| sere OP_SHORT_AND sere
{ $$ = multop::instance(multop::AndNLM, $1, $3); }
| sere OP_SHORT_AND error
{ missing_right_binop($$, $1, @2,
"non-length-matching and operator"); }
| sere OP_OR sere
{ $$ = multop::instance(multop::OrRat, $1, $3); }
| sere OP_OR error
{ missing_right_binop($$, $1, @2, "or operator"); }
| sere OP_CONCAT sere
{ $$ = multop::instance(multop::Concat, $1, $3); }
| sere OP_CONCAT error
{ missing_right_binop($$, $1, @2, "concat operator"); }
| sere OP_FUSION sere
{ $$ = multop::instance(multop::Fusion, $1, $3); }
| sere OP_FUSION error
{ missing_right_binop($$, $1, @2, "fusion operator"); }
| sere starargs
{
if ($2.max < $2.min)
{
error_list.push_back(parse_error(@2, "reversed range"));
std::swap($2.max, $2.min);
}
$$ = bunop::instance(bunop::Star, $1, $2.min, $2.max);
}
| starargs
{
if ($1.max < $1.min)
{
error_list.push_back(parse_error(@1, "reversed range"));
std::swap($1.max, $1.min);
}
$$ = bunop::instance(bunop::Star, constant::true_instance(),
$1.min, $1.max);
}
| sere equalargs
{
if ($2.max < $2.min)
{
error_list.push_back(parse_error(@2, "reversed range"));
std::swap($2.max, $2.min);
}
if ($1->is_boolean())
{
$$ = bunop::sugar_equal($1, $2.min, $2.max);
}
else
{
error_list.push_back(parse_error(@1,
"not a boolean expression: [=...] can only "
"be applied to a Boolean expression"));
error_list.push_back(parse_error(@$,
"treating this block as false"));
$1->destroy();
$$ = constant::false_instance();
}
}
| sere gotoargs
{
if ($2.max < $2.min)
{
error_list.push_back(parse_error(@2, "reversed range"));
std::swap($2.max, $2.min);
}
if ($1->is_boolean())
{
$$ = bunop::sugar_goto($1, $2.min, $2.max);
}
else
{
error_list.push_back(parse_error(@1,
"not a boolean expression: [->...] can only "
"be applied to a Boolean expression"));
error_list.push_back(parse_error(@$,
"treating this block as false"));
$1->destroy();
$$ = constant::false_instance();
}
}
| sere OP_XOR sere
{
if ($1->is_boolean() && $3->is_boolean())
{
$$ = binop::instance(binop::Xor, $1, $3);
}
else
{
if (!$1->is_boolean())
{
error_list.push_back(parse_error(@1,
"not a boolean expression: inside SERE `<->' can only "
"be applied to Boolean expressions"));
}
if (!$3->is_boolean())
{
error_list.push_back(parse_error(@3,
"not a boolean expression: inside SERE `<->' can only "
"be applied to Boolean expressions"));
}
error_list.push_back(parse_error(@$,
"treating this block as false"));
$1->destroy();
$3->destroy();
$$ = constant::false_instance();
}
}
| sere OP_XOR error
{ missing_right_binop($$, $1, @2, "xor operator"); }
| sere OP_IMPLIES sere
{
if ($1->is_boolean())
{
$$ = binop::instance(binop::Implies, $1, $3);
}
else
{
if (!$1->is_boolean())
{
error_list.push_back(parse_error(@1,
"not a boolean expression: inside SERE `->' can only "
"be applied to a Boolean expression"));
}
error_list.push_back(parse_error(@$,
"treating this block as false"));
$1->destroy();
$3->destroy();
$$ = constant::false_instance();
}
}
| sere OP_IMPLIES error
{ missing_right_binop($$, $1, @2, "implication operator"); }
| sere OP_EQUIV sere
{
if ($1->is_boolean() && $3->is_boolean())
{
$$ = binop::instance(binop::Equiv, $1, $3);
}
else
{
if (!$1->is_boolean())
{
error_list.push_back(parse_error(@1,
"not a boolean expression: inside SERE `<->' can only "
"be applied to Boolean expressions"));
}
if (!$3->is_boolean())
{
error_list.push_back(parse_error(@3,
"not a boolean expression: inside SERE `<->' can only "
"be applied to Boolean expressions"));
}
error_list.push_back(parse_error(@$,
"treating this block as false"));
$1->destroy();
$3->destroy();
$$ = constant::false_instance();
}
}
| sere OP_EQUIV error
{ missing_right_binop($$, $1, @2, "equivalent operator"); }
bracedsere: BRACE_OPEN sere BRACE_CLOSE
{ $$ = $2; }
| BRACE_OPEN sere error BRACE_CLOSE
{ error_list.push_back(parse_error(@3, "ignoring this"));
$$ = $2;
}
| BRACE_OPEN error BRACE_CLOSE
{ error_list.push_back(parse_error(@$,
"treating this brace block as false"));
$$ = constant::false_instance();
}
| BRACE_OPEN sere END_OF_INPUT
{ error_list.push_back(parse_error(@1 + @2,
"missing closing brace"));
$$ = $2;
}
| BRACE_OPEN sere error END_OF_INPUT
{ error_list.push_back(parse_error(@3,
"ignoring trailing garbage and missing closing brace"));
$$ = $2;
}
| BRACE_OPEN error END_OF_INPUT
{ error_list.push_back(parse_error(@$,
"missing closing brace, "
"treating this brace block as false"));
$$ = constant::false_instance();
}
| BRA_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(), true, error_list);
delete $1;
if (!$$)
YYERROR;
}
parenthesedsubformula: PAR_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(), false, error_list);
delete $1;
if (!$$)
YYERROR;
}
| PAR_OPEN subformula PAR_CLOSE
{ $$ = $2; }
| PAR_OPEN subformula error PAR_CLOSE
{ error_list.push_back(parse_error(@3, "ignoring this"));
$$ = $2;
}
| PAR_OPEN error PAR_CLOSE
{ error_list.push_back(parse_error(@$,
"treating this parenthetical block as false"));
$$ = constant::false_instance();
}
| PAR_OPEN subformula END_OF_INPUT
{ error_list.push_back(parse_error(@1 + @2,
"missing closing parenthesis"));
$$ = $2;
}
| PAR_OPEN subformula error END_OF_INPUT
{ error_list.push_back(parse_error(@3,
"ignoring trailing garbage and missing closing parenthesis"));
$$ = $2;
}
| PAR_OPEN error END_OF_INPUT
{ error_list.push_back(parse_error(@$,
"missing closing parenthesis, "
"treating this parenthetical block as false"));
$$ = constant::false_instance();
}
subformula: booleanatom
| parenthesedsubformula
| subformula OP_AND subformula
{ $$ = multop::instance(multop::And, $1, $3); }
| subformula OP_AND error
{ missing_right_binop($$, $1, @2, "and operator"); }
| subformula OP_SHORT_AND subformula
{ $$ = multop::instance(multop::And, $1, $3); }
| subformula OP_SHORT_AND error
{ missing_right_binop($$, $1, @2, "and operator"); }
| subformula OP_STAR subformula
{ $$ = multop::instance(multop::And, $1, $3); }
| subformula OP_STAR error
{ missing_right_binop($$, $1, @2, "and operator"); }
| subformula OP_OR subformula
{ $$ = multop::instance(multop::Or, $1, $3); }
| subformula OP_OR error
{ missing_right_binop($$, $1, @2, "or operator"); }
| subformula OP_XOR subformula
{ $$ = binop::instance(binop::Xor, $1, $3); }
| subformula OP_XOR error
{ missing_right_binop($$, $1, @2, "xor operator"); }
| subformula OP_IMPLIES subformula
{ $$ = binop::instance(binop::Implies, $1, $3); }
| subformula OP_IMPLIES error
{ missing_right_binop($$, $1, @2, "implication operator"); }
| subformula OP_EQUIV subformula
{ $$ = binop::instance(binop::Equiv, $1, $3); }
| subformula OP_EQUIV error
{ missing_right_binop($$, $1, @2, "equivalent operator"); }
| subformula OP_U subformula
{ $$ = binop::instance(binop::U, $1, $3); }
| subformula OP_U error
{ missing_right_binop($$, $1, @2, "until operator"); }
| subformula OP_R subformula
{ $$ = binop::instance(binop::R, $1, $3); }
| subformula OP_R error
{ missing_right_binop($$, $1, @2, "release operator"); }
| subformula OP_W subformula
{ $$ = binop::instance(binop::W, $1, $3); }
| subformula OP_W error
{ missing_right_binop($$, $1, @2, "weak until operator"); }
| subformula OP_M subformula
{ $$ = binop::instance(binop::M, $1, $3); }
| subformula OP_M error
{ missing_right_binop($$, $1, @2, "strong release operator"); }
| OP_F subformula
{ $$ = unop::instance(unop::F, $2); }
| OP_F error
{ missing_right_op($$, @1, "sometimes operator"); }
| OP_G subformula
{ $$ = unop::instance(unop::G, $2); }
| OP_G error
{ missing_right_op($$, @1, "always operator"); }
| OP_X subformula
{ $$ = unop::instance(unop::X, $2); }
| OP_X error
{ missing_right_op($$, @1, "next operator"); }
| OP_NOT subformula
{ $$ = unop::instance(unop::Not, $2); }
| OP_NOT error
{ missing_right_op($$, @1, "not operator"); }
| bracedsere
{ $$ = unop::instance(unop::Closure, $1); }
| bracedsere OP_UCONCAT subformula
{ $$ = binop::instance(binop::UConcat, $1, $3); }
| bracedsere parenthesedsubformula
{ $$ = binop::instance(binop::UConcat, $1, $2); }
| bracedsere OP_UCONCAT error
{ missing_right_binop_hard($$, $1, @2,
"universal overlapping concat operator"); }
| bracedsere OP_ECONCAT subformula
{ $$ = binop::instance(binop::EConcat, $1, $3); }
| bracedsere OP_ECONCAT error
{ missing_right_binop_hard($$, $1, @2,
"existential overlapping concat operator");
}
| bracedsere OP_UCONCAT_NONO subformula
/* {SERE}[]=>EXP = {SERE;1}[]->EXP */
{ $$ = binop::instance(binop::UConcat,
multop::instance(multop::Concat, $1,
constant::true_instance()), $3);
}
| bracedsere OP_UCONCAT_NONO error
{ missing_right_binop_hard($$, $1, @2,
"universal non-overlapping concat operator");
}
| bracedsere OP_ECONCAT_NONO subformula
/* {SERE}<>=>EXP = {SERE;1}<>->EXP */
{ $$ = binop::instance(binop::EConcat,
multop::instance(multop::Concat, $1,
constant::true_instance()), $3);
}
| bracedsere OP_ECONCAT_NONO error
{ missing_right_binop_hard($$, $1, @2,
"existential non-overlapping concat operator");
}
| BRACE_OPEN sere BRACE_BANG_CLOSE
/* {SERE}! = {SERE} <>-> 1 */
{ $$ = binop::instance(binop::EConcat, $2,
constant::true_instance()); }
| BRA_BANG_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(), true, error_list);
delete $1;
if (!$$)
YYERROR;
$$ = binop::instance(binop::EConcat, $$,
constant::true_instance());
}
lbtformula: ATOMIC_PROP
{
$$ = parse_environment.require(*$1);
if (! $$)
{
std::string s = "atomic proposition `";
s += *$1;
s += "' rejected by environment `";
s += parse_environment.name();
s += "'";
error_list.push_back(parse_error(@1, s));
delete $1;
YYERROR;
}
else
delete $1;
}
| '!' lbtformula
{ $$ = unop::instance(unop::Not, $2); }
| '&' lbtformula lbtformula
{ $$ = multop::instance(multop::And, $2, $3); }
| '|' lbtformula lbtformula
{ $$ = multop::instance(multop::Or, $2, $3); }
| '^' lbtformula lbtformula
{ $$ = binop::instance(binop::Xor, $2, $3); }
| 'i' lbtformula lbtformula
{ $$ = binop::instance(binop::Implies, $2, $3); }
| 'e' lbtformula lbtformula
{ $$ = binop::instance(binop::Equiv, $2, $3); }
| 'X' lbtformula
{ $$ = unop::instance(unop::X, $2); }
| 'F' lbtformula
{ $$ = unop::instance(unop::F, $2); }
| 'G' lbtformula
{ $$ = unop::instance(unop::G, $2); }
| 'U' lbtformula lbtformula
{ $$ = binop::instance(binop::U, $2, $3); }
| 'V' lbtformula lbtformula
{ $$ = binop::instance(binop::R, $2, $3); }
| 'R' lbtformula lbtformula
{ $$ = binop::instance(binop::R, $2, $3); }
| 'W' lbtformula lbtformula
{ $$ = binop::instance(binop::W, $2, $3); }
| 'M' lbtformula lbtformula
{ $$ = binop::instance(binop::M, $2, $3); }
| 't'
{ $$ = constant::true_instance(); }
| 'f'
{ $$ = constant::false_instance(); }
;
%%
void
ltlyy::parser::error(const location_type& location, const std::string& message)
{
error_list.push_back(parse_error(location, message));
}
namespace spot
{
namespace ltl
{
const formula*
parse(const std::string& ltl_string,
parse_error_list& error_list,
environment& env,
bool debug, bool lenient)
{
const formula* result = 0;
flex_set_buffer(ltl_string.c_str(),
ltlyy::parser::token::START_LTL,
lenient);
ltlyy::parser parser(error_list, env, result);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
const formula*
parse_lbt(const std::string& ltl_string,
parse_error_list& error_list,
environment& env,
bool debug)
{
const formula* result = 0;
flex_set_buffer(ltl_string.c_str(),
ltlyy::parser::token::START_LBT,
false);
ltlyy::parser parser(error_list, env, result);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
const formula*
parse_sere(const std::string& sere_string,
parse_error_list& error_list,
environment& env,
bool debug,
bool lenient)
{
const formula* result = 0;
flex_set_buffer(sere_string.c_str(),
ltlyy::parser::token::START_SERE,
lenient);
ltlyy::parser parser(error_list, env, result);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
}
}
// Local Variables:
// mode: c++
// End: