// Copyright (C) 2008 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. #include "eltlast/formula.hh" #include "eltlvisit/lunabbrev.hh" #include "eltlvisit/nenoform.hh" #include "eltlvisit/destroy.hh" #include "tgba/tgbabddconcretefactory.hh" #include #include "eltl2tgba_lacim.hh" namespace spot { namespace { using namespace eltl; /// \brief Recursively translate a formula into a BDD. class eltl_trad_visitor: public const_visitor { public: eltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false) : fact_(fact), root_(root) { } virtual ~eltl_trad_visitor() { } bdd result() { return res_; } void visit(const atomic_prop* node) { res_ = bdd_ithvar(fact_.create_atomic_prop(node)); } void visit(const constant* node) { switch (node->val()) { case constant::True: res_ = bddtrue; return; case constant::False: res_ = bddfalse; return; } /* Unreachable code. */ assert(0); } void visit(const unop* node) { switch (node->op()) { case unop::Not: { res_ = bdd_not(recurse(node->child())); return; } } /* Unreachable code. */ assert(0); } void visit(const binop* node) { bdd f1 = recurse(node->first()); bdd f2 = recurse(node->second()); switch (node->op()) { case binop::Xor: res_ = bdd_apply(f1, f2, bddop_xor); return; case binop::Implies: res_ = bdd_apply(f1, f2, bddop_imp); return; case binop::Equiv: res_ = bdd_apply(f1, f2, bddop_biimp); return; } /* Unreachable code. */ assert(0); } void visit(const multop* node) { int op = -1; bool root = false; switch (node->op()) { case multop::And: op = bddop_and; res_ = bddtrue; // When the root formula is a conjunction it's ok to // consider all children as root formulae. This allows the // root-G trick to save many more variable. (See the // translation of G.) root = root_; break; case multop::Or: op = bddop_or; res_ = bddfalse; break; } assert(op != -1); unsigned s = node->size(); for (unsigned n = 0; n < s; ++n) { res_ = bdd_apply(res_, recurse(node->nth(n), root), op); } } void visit (const automatop* node) { // FIXME. (void) node; } bdd recurse(const formula* f, bool root = false) { eltl_trad_visitor v(fact_, root); f->accept(v); return v.result(); } private: bdd res_; tgba_bdd_concrete_factory& fact_; bool root_; }; } // anonymous tgba_bdd_concrete* eltl_to_tgba_lacim(const eltl::formula* f, bdd_dict* dict) { // Normalize the formula. We want all the negations on // the atomic propositions. We also suppress logic // abbreviations such as <=>, =>, or XOR, since they // would involve negations at the BDD level. const eltl::formula* f1 = eltl::unabbreviate_logic(f); const eltl::formula* f2 = eltl::negative_normal_form(f1); eltl::destroy(f1); // Traverse the formula and draft the automaton in a factory. tgba_bdd_concrete_factory fact(dict); eltl_trad_visitor v(fact, true); f2->accept(v); eltl::destroy(f2); fact.finish(); // Finally setup the resulting automaton. return new tgba_bdd_concrete(fact, v.result()); } }