// Copyright (C) 2010, 2011, 2012 Laboratoire de Recherche et // Développement de l'Epita (LRDE). // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. //#define TRACE #ifdef TRACE # define trace std::cerr #else # define trace while (0) std::cerr #endif #include #include #include #include "minimize.hh" #include "ltlast/allnodes.hh" #include "misc/hash.hh" #include "misc/bddlt.hh" #include "ta/tgtaexplicit.hh" #include "taalgos/statessetbuilder.hh" #include "tgba/tgbaexplicit.hh" #include "tgba/bddprint.hh" namespace spot { typedef Sgi::hash_set hash_set; typedef Sgi::hash_map hash_map; typedef std::list partition_t; namespace { static std::ostream& dump_hash_set(const hash_set* hs, const ta* aut, std::ostream& out) { out << "{"; const char* sep = ""; for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i) { out << sep << aut->format_state(*i); sep = ", "; } out << "}"; return out; } static std::string format_hash_set(const hash_set* hs, const ta* aut) { std::ostringstream s; dump_hash_set(hs, aut, s); return s.str(); } } // From the base automaton and the list of sets, build the minimal automaton void build_result(const ta* a, std::list& sets, tgba_explicit_number* result_tgba, ta_explicit* result) { // For each set, create a state in the tgbaulting automaton. // For a state s, state_num[s] is the number of the state in the minimal // automaton. hash_map state_num; std::list::iterator sit; unsigned num = 0; for (sit = sets.begin(); sit != sets.end(); ++sit) { hash_set::iterator hit; hash_set* h = *sit; for (hit = h->begin(); hit != h->end(); ++hit) state_num[*hit] = num; ++num; } // For each transition in the initial automaton, add the corresponding // transition in ta. for (sit = sets.begin(); sit != sets.end(); ++sit) { hash_set::iterator hit; hash_set* h = *sit; hit = h->begin(); const state* src = *hit; unsigned src_num = state_num[src]; state* tgba_state = result_tgba->add_state(src_num); bdd tgba_condition = bddtrue; bool is_initial_state = a->is_initial_state(src); if ((a->get_artificial_initial_state() == 0) && is_initial_state) tgba_condition = a->get_state_condition(src); bool is_accepting_state = a->is_accepting_state(src); bool is_livelock_accepting_state = a->is_livelock_accepting_state(src); state_ta_explicit* new_src = new state_ta_explicit(tgba_state, tgba_condition, is_initial_state, is_accepting_state, is_livelock_accepting_state); state_ta_explicit* ta_src = result->add_state(new_src); if (ta_src != new_src) { delete new_src; } else if (a->get_artificial_initial_state() != 0) { if (a->get_artificial_initial_state() == src) result->set_artificial_initial_state(new_src); } else if (is_initial_state) { result->add_to_initial_states_set(new_src); } ta_succ_iterator* succit = a->succ_iter(src); for (succit->first(); !succit->done(); succit->next()) { const state* dst = succit->current_state(); hash_map::const_iterator i = state_num.find(dst); if (i == state_num.end()) // Ignore useless destinations. continue; state* tgba_state = result_tgba->add_state(i->second); bdd tgba_condition = bddtrue; is_initial_state = a->is_initial_state(dst); if ((a->get_artificial_initial_state() == 0) && is_initial_state) tgba_condition = a->get_state_condition(dst); bool is_accepting_state = a->is_accepting_state(dst); bool is_livelock_accepting_state = a->is_livelock_accepting_state( dst); state_ta_explicit* new_dst = new state_ta_explicit(tgba_state, tgba_condition, is_initial_state, is_accepting_state, is_livelock_accepting_state); state_ta_explicit* ta_dst = result->add_state(new_dst); if (ta_dst != new_dst) { delete new_dst; } else if (a->get_artificial_initial_state() != 0) { if (a->get_artificial_initial_state() == dst) result->set_artificial_initial_state(new_dst); } else if (is_initial_state) result->add_to_initial_states_set(new_dst); result->create_transition(ta_src, succit->current_condition(), succit->current_acceptance_conditions(), ta_dst); } delete succit; } } partition_t build_partition(const ta* ta_) { partition_t cur_run; partition_t next_run; // The list of equivalent states. partition_t done; std::set states_set = get_states_set(ta_); hash_set* I = new hash_set; // livelock acceptance states hash_set* G = new hash_set; // Buchi acceptance states hash_set* F = new hash_set; // Buchi and livelock acceptance states hash_set* G_F = new hash_set; // the other states (non initial and not in G, F and G_F) hash_set* S = new hash_set; std::set::iterator it; spot::state* artificial_initial_state = ta_->get_artificial_initial_state(); for (it = states_set.begin(); it != states_set.end(); it++) { const state* s = (*it); if (s == artificial_initial_state) { I->insert(s); } else if (artificial_initial_state == 0 && ta_->is_initial_state(s)) { I->insert(s); } else if (ta_->is_livelock_accepting_state(s) && ta_->is_accepting_state(s)) { G_F->insert(s); } else if (ta_->is_accepting_state(s)) { F->insert(s); } else if (ta_->is_livelock_accepting_state(s)) { G->insert(s); } else { S->insert(s); } } hash_map state_set_map; // Size of ta_ unsigned size = states_set.size() + 6; // Use bdd variables to number sets. set_num is the first variable // available. unsigned set_num = ta_->get_dict()->register_anonymous_variables(size, ta_); std::set free_var; for (unsigned i = set_num; i < set_num + size; ++i) free_var.insert(i); std::map used_var; { for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i) { hash_set* cI = new hash_set; cI->insert(*i); done.push_back(cI); used_var[set_num] = 1; free_var.erase(set_num); state_set_map[*i] = set_num; ++set_num; } } delete I; if (!G->empty()) { unsigned s = G->size(); unsigned num = set_num; ++set_num; used_var[num] = s; free_var.erase(num); if (s > 1) cur_run.push_back(G); else done.push_back(G); for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i) state_set_map[*i] = num; } else delete G; if (!F->empty()) { unsigned s = F->size(); unsigned num = set_num; ++set_num; used_var[num] = s; free_var.erase(num); if (s > 1) cur_run.push_back(F); else done.push_back(F); for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i) state_set_map[*i] = num; } else delete F; if (!G_F->empty()) { unsigned s = G_F->size(); unsigned num = set_num; ++set_num; used_var[num] = s; free_var.erase(num); if (s > 1) cur_run.push_back(G_F); else done.push_back(G_F); for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i) state_set_map[*i] = num; } else delete G_F; if (!S->empty()) { unsigned s = S->size(); unsigned num = set_num; ++set_num; used_var[num] = s; free_var.erase(num); if (s > 1) cur_run.push_back(S); else done.push_back(S); for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i) state_set_map[*i] = num; } else delete S; // A bdd_states_map is a list of formulae (in a BDD form) associated with a // destination set of states. typedef std::map bdd_states_map; bool did_split = true; unsigned num = set_num; ++set_num; used_var[num] = 1; free_var.erase(num); bdd bdd_false_acceptance_condition = bdd_ithvar(num); while (did_split) { did_split = false; while (!cur_run.empty()) { // Get a set to process. hash_set* cur = cur_run.front(); cur_run.pop_front(); trace << "processing " << format_hash_set(cur, ta_) << std::endl; hash_set::iterator hi; bdd_states_map bdd_map; for (hi = cur->begin(); hi != cur->end(); ++hi) { const state* src = *hi; bdd f = bddfalse; ta_succ_iterator* si = ta_->succ_iter(src); trace << "+src: " << src << std::endl; for (si->first(); !si->done(); si->next()) { const state* dst = si->current_state(); hash_map::const_iterator i = state_set_map.find(dst); assert(i != state_set_map.end()); bdd current_acceptance_conditions = si->current_acceptance_conditions(); if (current_acceptance_conditions == bddfalse) current_acceptance_conditions = bdd_false_acceptance_condition; f |= (bdd_ithvar(i->second) & si->current_condition() & current_acceptance_conditions); trace << "+f: " << bdd_format_accset(ta_->get_dict(), f) << std::endl; trace << " -bdd_ithvar(i->second): " << bdd_format_accset( ta_->get_dict(), bdd_ithvar(i->second)) << std::endl; trace << " -si->current_condition(): " << bdd_format_accset(ta_->get_dict(), si->current_condition()) << std::endl; trace << " -current_acceptance_conditions: " << bdd_format_accset(ta_->get_dict(), current_acceptance_conditions) << std::endl; } delete si; // Have we already seen this formula ? bdd_states_map::iterator bsi = bdd_map.find(f); if (bsi == bdd_map.end()) { // No, create a new set. hash_set* new_set = new hash_set; new_set->insert(src); bdd_map[f] = new_set; } else { // Yes, add the current state to the set. bsi->second->insert(src); } } bdd_states_map::iterator bsi = bdd_map.begin(); if (bdd_map.size() == 1) { // The set was not split. trace << "set " << format_hash_set(bsi->second, ta_) << " was not split" << std::endl; next_run.push_back(bsi->second); } else { did_split = true; for (; bsi != bdd_map.end(); ++bsi) { hash_set* set = bsi->second; // Free the number associated to these states. unsigned num = state_set_map[*set->begin()]; assert(used_var.find(num) != used_var.end()); unsigned left = (used_var[num] -= set->size()); // Make sure LEFT does not become negative (hence bigger // than SIZE when read as unsigned) assert(left < size); if (left == 0) { used_var.erase(num); free_var.insert(num); } // Pick a free number assert(!free_var.empty()); num = *free_var.begin(); free_var.erase(free_var.begin()); used_var[num] = set->size(); for (hash_set::iterator hit = set->begin(); hit != set->end(); ++hit) state_set_map[*hit] = num; // Trivial sets can't be splitted any further. if (set->size() == 1) { trace << "set " << format_hash_set(set, ta_) << " is minimal" << std::endl; done.push_back(set); } else { trace << "set " << format_hash_set(set, ta_) << " should be processed further" << std::endl; next_run.push_back(set); } } } delete cur; } if (did_split) trace << "splitting did occur during this pass." << std::endl; //elsetrace << "splitting did not occur during this pass." << std::endl; std::swap(cur_run, next_run); } done.splice(done.end(), cur_run); #ifdef TRACE trace << "Final partition: "; for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i) trace << format_hash_set(*i, ta_) << " "; trace << std::endl; #endif return done; } ta* minimize_ta(const ta* ta_) { tgba_explicit_number* tgba = new tgba_explicit_number(ta_->get_dict()); ta_explicit* res = new ta_explicit(tgba, ta_->all_acceptance_conditions(), 0, /* own_tgba = */ true); partition_t partition = build_partition(ta_); // Build the ta automata result. build_result(ta_, partition, tgba, res); // Free all the allocated memory. std::list::iterator itdone; for (itdone = partition.begin(); itdone != partition.end(); ++itdone) delete *itdone; return res; } tgta_explicit* minimize_tgta(const tgta_explicit* tgta_) { tgba_explicit_number* tgba = new tgba_explicit_number(tgta_->get_dict()); tgta_explicit* res = new tgta_explicit(tgba, tgta_->all_acceptance_conditions(), 0, /* own_tgba = */ true); const ta_explicit* ta = tgta_->get_ta(); partition_t partition = build_partition(ta); // Build the minimal tgta automaton. build_result(ta, partition, tgba, res->get_ta()); // Free all the allocated memory. std::list::iterator itdone; for (itdone = partition.begin(); itdone != partition.end(); ++itdone) delete *itdone; return res; } }