// -*- coding: utf-8 -*- // Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire de // Recherche et Développement de l'Epita (LRDE). // Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris // 6 (LIP6), département Systèmes Répartis Coopératifs (SRC), // Université Pierre et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . /// \file ltlast/binop.hh /// \brief LTL binary operators /// /// This does not include \c AND and \c OR operators. These are /// considered to be multi-operand operators (see spot::ltl::multop). #ifndef SPOT_LTLAST_BINOP_HH # define SPOT_LTLAST_BINOP_HH #include "formula.hh" #include #include #include namespace spot { namespace ltl { /// \ingroup ltl_ast /// \brief Binary operator. class SPOT_API binop final: public formula { public: /// Different kinds of binary opertaors /// /// And and Or are not here. Because they /// are often nested we represent them as multops. enum type { Xor, Implies, Equiv, U, ///< until R, ///< release (dual of until) W, ///< weak until M, ///< strong release (dual of weak until) EConcat, ///< Existential Concatenation EConcatMarked, ///< Existential Concatenation, Marked UConcat ///< Universal Concatenation }; /// \brief Build a unary operator with operation \a op and /// children \a first and \a second. /// /// Some reordering will be performed on arguments of commutative /// operators (Xor and Equiv) to ensure that for instance (a <=> b) /// is the same formula as (b <=> a). /// /// Furthermore, the following trivial simplifications are /// performed (the left formula is rewritten as the right /// formula): /// - (1 => Exp) = Exp /// - (0 => Exp) = 1 /// - (Exp => 1) = 1 /// - (Exp => 0) = !Exp /// - (Exp => Exp) = 1 /// - (1 ^ Exp) = !Exp /// - (0 ^ Exp) = Exp /// - (Exp ^ Exp) = 0 /// - (0 <=> Exp) = !Exp /// - (1 <=> Exp) = Exp /// - (Exp <=> Exp) = Exp /// - (Exp U 1) = 1 /// - (Exp U 0) = 0 /// - (0 U Exp) = Exp /// - (Exp U Exp) = Exp /// - (Exp W 1) = 1 /// - (0 W Exp) = Exp /// - (1 W Exp) = 1 /// - (Exp W Exp) = Exp /// - (Exp R 1) = 1 /// - (Exp R 0) = 0 /// - (1 R Exp) = Exp /// - (Exp R Exp) = Exp /// - (Exp M 0) = 0 /// - (1 M Exp) = Exp /// - (0 M Exp) = 0 /// - (Exp M Exp) = Exp /// - 0 <>-> Exp = 0 /// - 1 <>-> Exp = Exp /// - [*0] <>-> Exp = 0 /// - Exp <>-> 0 = 0 /// - boolExp <>-> Exp = boolExp & Exp /// - 0 []-> Exp = 1 /// - 1 []-> Exp = Exp /// - [*0] []-> Exp = 1 /// - Exp []-> 1 = 1 /// - boolExp <>-> Exp = !boolExp | Exp static const formula* instance(type op, const formula* first, const formula* second); virtual void accept(visitor& v) const override; /// Get the first operand. const formula* first() const { return first_; } /// Get the second operand. const formula* second() const { return second_; } /// Get the type of this operator. type op() const { return op_; } /// Get the type of this operator, as a string. const char* op_name() const; /// Return a canonic representation of the atomic proposition virtual std::string dump() const override; /// Number of instantiated binary operators. For debugging. static unsigned instance_count(); /// Dump all instances. For debugging. static std::ostream& dump_instances(std::ostream& os); protected: typedef std::tuple key; typedef std::map map; static map instances; binop(type op, const formula* first, const formula* second); virtual ~binop(); private: type op_; const formula* first_; const formula* second_; }; /// \brief Cast \a f into a binop /// /// Cast \a f into a binop iff it is a binop instance. Return 0 /// otherwise. This is faster than \c dynamic_cast. inline const binop* is_binop(const formula* f) { if (f->kind() != formula::BinOp) return 0; return static_cast(f); } /// \brief Cast \a f into a binop if it has type \a op. /// /// Cast \a f into a binop iff it is a unop instance with operator \a op. /// Returns 0 otherwise. inline const binop* is_binop(const formula* f, binop::type op) { if (const binop* bo = is_binop(f)) if (bo->op() == op) return bo; return 0; } /// \brief Cast \a f into a binop if it has type \a op1 or \a op2. /// /// Cast \a f into a binop iff it is a unop instance with operator \a op1 or /// \a op2. Returns 0 otherwise. inline const binop* is_binop(const formula* f, binop::type op1, binop::type op2) { if (const binop* bo = is_binop(f)) if (bo->op() == op1 || bo->op() == op2) return bo; return 0; } /// \brief Cast \a f into a binop if it is a U. /// /// Return 0 otherwise. inline const binop* is_U(const formula* f) { return is_binop(f, binop::U); } /// \brief Cast \a f into a binop if it is a M. /// /// Return 0 otherwise. inline const binop* is_M(const formula* f) { return is_binop(f, binop::M); } /// \brief Cast \a f into a binop if it is a R. /// /// Return 0 otherwise. inline const binop* is_R(const formula* f) { return is_binop(f, binop::R); } /// \brief Cast \a f into a binop if it is a W. /// /// Return 0 otherwise. inline const binop* is_W(const formula* f) { return is_binop(f, binop::W); } } } #endif // SPOT_LTLAST_BINOP_HH