// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. //#define TRACE #include #ifdef TRACE #define trace std::cerr #else #define trace while (0) std::cerr #endif #include #include #include "misc/hash.hh" #include "tgba/tgba.hh" #include "emptiness.hh" #include "emptiness_stats.hh" #include "se05.hh" #include "ndfs_result.hxx" /// FIXME: make compiling depedent the taking into account of weights. namespace spot { namespace { enum color {WHITE, CYAN, BLUE, RED}; /// \brief Emptiness checker on spot::tgba automata having at most one /// accepting condition (i.e. a TBA). template class se05_search : public emptiness_check, public ec_statistics { public: /// \brief Initialize the Magic Search algorithm on the automaton \a a /// /// \pre The automaton \a a must have at most one accepting /// condition (i.e. it is a TBA). se05_search(const tgba *a, size_t size) : emptiness_check(a), ec_statistics(), h(size), all_cond(a->all_acceptance_conditions()) { assert(a->number_of_acceptance_conditions() <= 1); } virtual ~se05_search() { // Release all iterators on the stacks. while (!st_blue.empty()) { h.pop_notify(st_blue.front().s); delete st_blue.front().it; st_blue.pop_front(); } while (!st_red.empty()) { h.pop_notify(st_red.front().s); delete st_red.front().it; st_red.pop_front(); } } /// \brief Perform a Magic Search. /// /// \return non null pointer iff the algorithm has found a /// new accepting path. /// /// check() can be called several times (until it returns a null /// pointer) to enumerate all the visited accepting paths. The method /// visits only a finite set of accepting paths. virtual emptiness_check_result* check() { if (st_red.empty()) { assert(st_blue.empty()); const state* s0 = a_->get_init_state(); inc_states(); h.add_new_state(s0, CYAN); push(st_blue, s0, bddfalse, bddfalse); if (dfs_blue()) return new ndfs_result, heap>(*this); } else { h.pop_notify(st_red.front().s); pop(st_red); if (!st_red.empty() && dfs_red()) return new ndfs_result, heap>(*this); else if (dfs_blue()) return new ndfs_result, heap>(*this); } return 0; } virtual std::ostream& print_stats(std::ostream &os) const { os << states() << " distinct nodes visited" << std::endl; os << transitions() << " transitions explored" << std::endl; os << max_depth() << " nodes for the maximal stack depth" << std::endl; if (!st_red.empty()) { assert(!st_blue.empty()); os << st_blue.size() + st_red.size() - 1 << " nodes for the counter example" << std::endl; } return os; } const heap& get_heap() const { return h; } const stack_type& get_st_blue() const { return st_blue; } const stack_type& get_st_red() const { return st_red; } private: void push(stack_type& st, const state* s, const bdd& label, const bdd& acc) { inc_depth(); tgba_succ_iterator* i = a_->succ_iter(s); i->first(); st.push_front(stack_item(s, i, label, acc)); } void pop(stack_type& st) { dec_depth(); delete st.front().it; st.pop_front(); } /// \brief Stack of the blue dfs. stack_type st_blue; /// \brief Stack of the red dfs. stack_type st_red; /// \brief Map where each visited state is colored /// by the last dfs visiting it. heap h; /// The unique accepting condition of the automaton \a a. bdd all_cond; bool dfs_blue() { while (!st_blue.empty()) { stack_item& f = st_blue.front(); trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) { trace << " It is white, go down" << std::endl; inc_states(); h.add_new_state(s_prime, CYAN); push(st_blue, s_prime, label, acc); } else if (c.get_color() == CYAN && (acc == all_cond || (f.s->compare(s_prime) != 0 && f.acc == all_cond))) { trace << " It is cyan and acceptance condition " << "is reached, report cycle" << std::endl; c.set_color(RED); push(st_red, s_prime, label, acc); return true; } else if (acc == all_cond && c.get_color() != RED) { // the test 'c.get_color() != RED' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. trace << " It is cyan or blue and the arc is " << "accepting, start a red dfs" << std::endl; c.set_color(RED); push(st_red, s_prime, label, acc); if (dfs_red()) return true; } else { trace << " It is cyan, blue or red, pop it" << std::endl; h.pop_notify(s_prime); } } else // Backtrack the edge // (predecessor of f.s in st_blue, , f.s) { trace << " All the successors have been visited" << std::endl; stack_item f_dest(f); pop(st_blue); typename heap::color_ref c = h.get_color_ref(f_dest.s); assert(!c.is_white()); if (!st_blue.empty() && f_dest.acc == all_cond && c.get_color() != RED) { // the test 'c.get_color() != RED' is added to limit // the number of runs reported by successive // calls to the check method. Without this // functionnality, the test can be ommited. trace << " The arc from " << a_->format_state(st_blue.front().s) << " to the current state is accepting, start a " << "red dfs" << std::endl; c.set_color(RED); push(st_red, f_dest.s, f_dest.label, f_dest.acc); if (dfs_red()) return true; } else { trace << " Pop it" << std::endl; c.set_color(BLUE); h.pop_notify(f_dest.s); } } } return false; } bool dfs_red() { assert(!st_red.empty()); while (!st_red.empty()) { stack_item& f = st_red.front(); trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c = h.get_color_ref(s_prime); if (c.is_white()) { // For an explicit search, we can pose assert(!c.is_white()) // because to reach a white state, the red dfs must // have crossed a cyan one (a state in the blue stack) // implying the report of a cycle. // However, with a bit-state hashing search and due to // collision, this property does not hold. trace << " It is white (due to collision), pop it" << std::endl; delete s_prime; } else if (c.get_color() == RED) { trace << " It is red, pop it" << std::endl; h.pop_notify(s_prime); } else if (c.get_color() == CYAN) { trace << " It is cyan, report a cycle" << std::endl; c.set_color(RED); push(st_red, s_prime, label, acc); return true; } else { trace << " It is blue, go down" << std::endl; c.set_color(RED); push(st_red, s_prime, label, acc); } } else // Backtrack { trace << " All the successors have been visited, pop it" << std::endl; h.pop_notify(f.s); pop(st_red); } } return false; } }; class explicit_se05_search_heap { typedef Sgi::hash_set hcyan_type; typedef Sgi::hash_map hash_type; public: class color_ref { public: color_ref(hash_type* h, hcyan_type* hc, const state* s) : is_cyan(true), ph(h), phc(hc), ps(s), pc(0) { } color_ref(color* c) : is_cyan(false), ph(0), phc(0), ps(0), pc(c) { } color get_color() const { if (is_cyan) return CYAN; return *pc; } void set_color(color c) { assert(!is_white()); if (is_cyan) { assert(c != CYAN); int i = phc->erase(ps); assert(i==1); (void)i; ph->insert(std::make_pair(ps, c)); } else { *pc=c; } } bool is_white() const { return !is_cyan && pc==0; } private: bool is_cyan; hash_type* ph; //point to the main hash table hcyan_type* phc; // point to the hash table hcyan const state* ps; // point to the state in hcyan color *pc; // point to the color of a state stored in main hash table }; explicit_se05_search_heap(size_t) { } ~explicit_se05_search_heap() { hcyan_type::const_iterator sc = hc.begin(); while (sc != hc.end()) { const state* ptr = *sc; ++sc; delete ptr; } hash_type::const_iterator s = h.begin(); while (s != h.end()) { const state* ptr = s->first; ++s; delete ptr; } } color_ref get_color_ref(const state*& s) { hcyan_type::iterator ic = hc.find(s); if (ic==hc.end()) { hash_type::iterator it = h.find(s); if (it==h.end()) return color_ref(0); // white state if (s!=it->first) { delete s; s = it->first; } return color_ref(&(it->second)); // blue or red state } if (s!=*ic) { delete s; s = *ic; } return color_ref(&h, &hc, *ic); // cyan state } void add_new_state(const state* s, color c) { assert(hc.find(s)==hc.end() && h.find(s)==h.end()); if (c == CYAN) hc.insert(s); else h.insert(std::make_pair(s, c)); } void pop_notify(const state*) const { } bool has_been_visited(const state* s) const { hcyan_type::const_iterator ic = hc.find(s); if (ic == hc.end()) { hash_type::const_iterator it = h.find(s); return (it != h.end()); } return true; } private: hash_type h; // associate to each blue and red state its color hcyan_type hc; // associate to each cyan state its weight }; class bsh_se05_search_heap { private: typedef Sgi::hash_set hcyan_type; public: class color_ref { public: color_ref(hcyan_type* h, const state* st, unsigned char *base, unsigned char offset) : is_cyan(true), phc(h), ps(st), b(base), o(offset*2) { } color_ref(unsigned char *base, unsigned char offset) : is_cyan(false), phc(0), ps(0), b(base), o(offset*2) { } color get_color() const { if (is_cyan) return CYAN; return color(((*b) >> o) & 3U); } void set_color(color c) { if (is_cyan && c!=CYAN) { int i = phc->erase(ps); assert(i==1); (void)i; } *b = (*b & ~(3U << o)) | (c << o); } bool is_white() const { return get_color()==WHITE; } private: bool is_cyan; hcyan_type* phc; const state* ps; unsigned char *b; unsigned char o; }; bsh_se05_search_heap(size_t s) : size(s) { h = new unsigned char[size]; memset(h, WHITE, size); } ~bsh_se05_search_heap() { delete[] h; } color_ref get_color_ref(const state*& s) { size_t ha = s->hash(); hcyan_type::iterator ic = hc.find(s); if (ic!=hc.end()) return color_ref(&hc, *ic, &h[ha%size], ha%4); return color_ref(&h[ha%size], ha%4); } void add_new_state(const state* s, color c) { assert(get_color_ref(s).is_white()); if (c==CYAN) hc.insert(s); else { color_ref cr(get_color_ref(s)); cr.set_color(c); } } void pop_notify(const state* s) const { delete s; } bool has_been_visited(const state* s) const { hcyan_type::const_iterator ic = hc.find(s); if (ic != hc.end()) return true; size_t ha = s->hash(); return color((h[ha%size] >> ((ha%4)*2)) & 3U) != WHITE; } private: size_t size; unsigned char* h; hcyan_type hc; }; } // anonymous emptiness_check* explicit_se05_search(const tgba *a) { return new se05_search(a, 0); } emptiness_check* bit_state_hashing_se05_search(const tgba *a, size_t size) { return new se05_search(a, size); } }