// -*- coding: utf-8 -*-
// Copyright (C) 2013, 2014, 2015, 2016 Laboratoire de Recherche et
// Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
namespace spot
{
unsigned complete_here(twa_graph_ptr aut)
{
// We do not use the initial state, but calling
// get_init_state_number() may create it and change the number of
// states. This has to be done before calling aut->num_states().
unsigned init = aut->get_init_state_number();
unsigned n = aut->num_states();
unsigned sink = -1U;
// UM is a pair (bool, mark). If the Boolean is false, the
// acceptance is always satisfiable. Otherwise, MARK is an
// example of unsatisfiable mark.
auto um = aut->acc().unsat_mark();
if (!um.first)
{
// We cannot safely complete an automaton if its
// acceptance is always satisfiable.
auto acc = aut->set_buchi();
for (auto& t: aut->edge_vector())
t.acc = acc;
}
else
{
// Loop over the states and search a state that has only self
// loop labeled by the same non-accepting mark. This will be
// our sink state. Note that we do not even have to ensure
// that the state is complete as we will complete the whole
// automaton in a second pass.
for (unsigned i = 0; i < n; ++i)
{
bool sinkable = true;
bool first = true;
acc_cond::mark_t commonacc = 0U;
for (auto& t: aut->out(i))
{
if (t.dst != i) // Not a self-loop
{
sinkable = false;
break;
}
if (first)
{
commonacc = t.acc;
first = false;
}
else if (t.acc != commonacc)
{
sinkable = false;
break;
}
}
if (sinkable && !aut->acc().accepting(commonacc))
{
// We have found a sink!
um.second = commonacc;
sink = i;
break;
}
}
}
unsigned t = aut->num_edges();
// If the automaton is empty, pretend that state 0 is a sink.
if (t == 0)
sink = init;
// Now complete all states (excluding any newly added the sink).
for (unsigned i = 0; i < n; ++i)
{
bdd missingcond = bddtrue;
acc_cond::mark_t acc = 0U;
for (auto& t: aut->out(i))
{
missingcond -= t.cond;
// FIXME: This is ugly.
//
// In case the automaton uses state-based acceptance, we
// need to put the new edge in the same set as all
// the other.
//
// In case the automaton uses edge-based acceptance,
// it does not matter what acceptance set we put the new
// edge into.
//
// So in both cases, we put the edge in the same
// acceptance sets as the last outgoing edge of the
// state.
acc = t.acc;
}
// If the state has incomplete successors, we need to add a
// edge to some sink state.
if (missingcond != bddfalse)
{
// If we haven't found any sink, simply add one.
if (sink == -1U)
{
sink = aut->new_state();
aut->new_edge(sink, sink, bddtrue, um.second);
}
// In case the automaton use state-based acceptance, propagate
// the acceptance of the first edge to the one we add.
if (aut->prop_state_acc() != true)
acc = 0U;
aut->new_edge(i, sink, missingcond, acc);
}
}
// Get rid of any named property if the automaton changed.
if (t < aut->num_edges())
aut->release_named_properties();
else
assert(t == aut->num_edges());
return sink;
}
twa_graph_ptr complete(const const_twa_ptr& aut)
{
auto res = make_twa_graph(aut, {
true, // state based
true, // inherently_weak
true, // deterministic
true, // stutter inv.
});
complete_here(res);
return res;
}
}