#+TITLE: =ltl2tgba= #+EMAIL spot@lrde.epita.fr #+OPTIONS: H:2 num:nil toc:t #+LINK_UP: file:tools.html This tool translates LTL or PSL formulas into two kinds of Büchi automata. The default is to output Transition-based Generalized Büchi Automata (hereinafter abbreviated TGBA), but more traditional Büchi automata (BA) may be requested using the =-B= option. * TGBA and BA Formulas to translate may be specified using [[file:ioltl.org][common input options for LTL/PSL formulas]]. #+BEGIN_SRC sh :results verbatim :exports both ltl2tgba -f 'Fa & GFb' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1"] 1 -> 1 [label="!a\n"] 1 -> 2 [label="a\n"] 2 [label="2"] 2 -> 2 [label="b\n{Acc[b]}"] 2 -> 2 [label="!b\n"] } #+end_example Actually, because =ltl2tgba= is often used with a single formula passed on the command line, the =-f= option can be omitted and any command-line parameter that is not the argument of some option will be assumed to be a formula to translate (this differs from [[file:ltlfilt.org][=ltlfilt=]], where such parameters are assumed to be filenames). The default output format, as shown above, is [[http://http://www.graphviz.org/][GraphViz]]'s format. This can converted into a picture, or into vectorial format using =dot= or =dotty=. Typically, you could get a =pdf= of this TGBA using #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba "Fa & GFb" | dot -Tpdf > tgba.pdf #+END_SRC #+RESULTS: The result would look like this: #+NAME: dotex #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba "Fa & GFb" | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: dotex #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1"] 1 -> 2 [label="a\\n"] 1 -> 1 [label="!a\\n"] 2 [label="2"] 2 -> 2 [label="b\\n{Acc[b]}"] 2 -> 2 [label="!b\\n"] } #+end_example #+BEGIN_SRC dot :file dotex.png :cmdline -Tpng :var txt=dotex :exports results $txt #+END_SRC #+RESULTS: [[file:dotex.png]] The string between braces, =Acc[b]=, represents an acceptance set (its actual name is not really important): any transition labeled by =Acc[b]= belongs to the =Acc[b]= acceptance set. You may have many transitions in the same acceptance set, and a transition may also belong to multiple acceptance sets. An infinite path through this automaton is accepting iff it visit each acceptance set infinitely often. Therefore, in the above example, any accepted path will /necessarily/ leave the initial state after a finite amount of steps, and then it will verify the property =b= infinitely often. It is also possible that an automaton do not use any acceptance set at all, in which any run is accepting. Here is a TGBA with multiple acceptance sets (we omit the call to =dot= to render the output of =ltl2tgba= from now on): #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba 'GFa & GFb' #+END_SRC #+RESULTS: : digraph G { : 0 [label="", style=invis, height=0] : 0 -> 1 : 1 [label="1"] : 1 -> 1 [label="a & b\n{Acc[b], Acc[a]}"] : 1 -> 1 [label="b & !a\n{Acc[b]}"] : 1 -> 1 [label="a & !b\n{Acc[a]}"] : 1 -> 1 [label="!b & !a\n"] : } #+NAME: dotex2 #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba "GFa & GFb" | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: dotex2 : digraph G { : 0 [label="", style=invis, height=0] : 0 -> 1 : 1 [label="1"] : 1 -> 1 [label="a & b\\n{Acc[b], Acc[a]}"] : 1 -> 1 [label="b & !a\\n{Acc[b]}"] : 1 -> 1 [label="a & !b\\n{Acc[a]}"] : 1 -> 1 [label="!b & !a\\n"] : } #+BEGIN_SRC dot :file dotex2.png :cmdline -Tpng :var txt=dotex2 :exports results $txt #+END_SRC #+RESULTS: [[file:dotex2.png]] The above TGBA has two acceptance sets: =Acc[a]= and =Acc[b]=. The position of these acceptance sets ensures that =a= and =b= atomic proposition must be true infinitely often. A Büchi automaton for the previous formula can be obtained with the =-B= option: #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba -B 'GFa & GFb' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="0", peripheries=2] 1 -> 1 [label="a & b\n{Acc[1]}"] 1 -> 2 [label="b & !a\n{Acc[1]}"] 1 -> 3 [label="!b\n{Acc[1]}"] 2 [label="1"] 2 -> 1 [label="a\n"] 2 -> 2 [label="!a\n"] 3 [label="2"] 3 -> 1 [label="a & b\n"] 3 -> 2 [label="b & !a\n"] 3 -> 3 [label="!b\n"] } #+end_example #+NAME: dotex2ba #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba -B 'GFa & GFb' | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: dotex2ba #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="0", peripheries=2] 1 -> 1 [label="a & b\\n{Acc[1]}"] 1 -> 2 [label="b & !a\\n{Acc[1]}"] 1 -> 3 [label="!b\\n{Acc[1]}"] 2 [label="1"] 2 -> 1 [label="a\\n"] 2 -> 2 [label="!a\\n"] 3 [label="2"] 3 -> 1 [label="a & b\\n"] 3 -> 2 [label="b & !a\\n"] 3 -> 3 [label="!b\\n"] } #+end_example #+BEGIN_SRC dot :file dotex2ba.png :cmdline -Tpng :var txt=dotex2ba :exports results $txt #+END_SRC #+RESULTS: [[file:dotex2ba.png]] Although accepting states in the Büchi automaton are pictured with double-lines, internally this automaton is still handled as a TGBA with a single acceptance set =Acc[1]= such that the transitions leaving the state are either all accepting, or all non-accepting. This is the reason why the =Acc[1]= sets are still shown in the output: it shows that a Büchi automaton is (a special case of) a TGBA. Various options controls the output format of =ltl2tgba=: #+BEGIN_SRC sh :results verbatim :exports results ltl2tgba --help | sed -n '/Output format:/,/^$/p' | sed '1d;$d' #+END_SRC #+RESULTS: : -8, --utf8 enable UTF-8 characters in output (ignored with : --lbtt or --spin) : --dot GraphViz's format (default) : --lbtt LBTT's format : -s, --spin Spin neverclaim (implies --ba) : --spot SPOT's format : --stats=FORMAT output statistics about the automaton The =-8= option can be used to improve the readability of the output if your system can display UTF-8 correctly. #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba -B8 'GFa & GFb' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="0", peripheries=2] 1 -> 1 [label="a∧b\n{Acc[1]}"] 1 -> 2 [label="b∧a̅\n{Acc[1]}"] 1 -> 3 [label="b̅\n{Acc[1]}"] 2 [label="1"] 2 -> 1 [label="a\n"] 2 -> 2 [label="a̅\n"] 3 [label="2"] 3 -> 1 [label="a∧b\n"] 3 -> 2 [label="b∧a̅\n"] 3 -> 3 [label="b̅\n"] } #+end_example #+NAME: dotex2ba8 #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba -B8 "GFa & GFb" | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: dotex2ba8 #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="0", peripheries=2] 1 -> 1 [label="a∧b\\n{Acc[1]}"] 1 -> 2 [label="b∧a̅\\n{Acc[1]}"] 1 -> 3 [label="b̅\\n{Acc[1]}"] 2 [label="1"] 2 -> 1 [label="a\\n"] 2 -> 2 [label="a̅\\n"] 3 [label="2"] 3 -> 1 [label="a∧b\\n"] 3 -> 2 [label="b∧a̅\\n"] 3 -> 3 [label="b̅\\n"] } #+end_example #+BEGIN_SRC dot :file dotex2ba8.png :cmdline -Tpng :var txt=dotex2ba8 :exports results $txt #+END_SRC #+RESULTS: [[file:dotex2ba8.png]] * Spin output Using the =--spin= or =-s= option, =ltl2tgba= will produce a Büchi automaton (the =-B= option is implied) as a never claim that can be fed to Spin. =ltl2tgba -s= is therefore a drop-in replacement for =spin -f=. #+BEGIN_SRC sh :results verbatim :exports both ltl2tgba -s 'GFa & GFb' #+END_SRC #+RESULTS: #+begin_example never { /* G(Fa & Fb) */ accept_init: if :: ((a) && (b)) -> goto accept_init :: ((b) && (!((a)))) -> goto T0_S2 :: ((!((b)))) -> goto T0_S3 fi; T0_S2: if :: ((a)) -> goto accept_init :: ((!((a)))) -> goto T0_S2 fi; T0_S3: if :: ((a) && (b)) -> goto accept_init :: ((b) && (!((a)))) -> goto T0_S2 :: ((!((b)))) -> goto T0_S3 fi; } #+end_example Since Spin 6 extended its syntax to support arbitrary atomic propositions, you may also need put the parser in =--lenient= mode to support these: #+BEGIN_SRC sh :results verbatim :exports both ltl2tgba -s --lenient '(a < b) U (process[2]@ok)' #+END_SRC #+RESULTS: : never { /* "a < b" U "process[2]@ok" */ : T0_init: : if : :: ((process[2]@ok)) -> goto accept_all : :: ((a < b) && (!(process[2]@ok))) -> goto T0_init : fi; : accept_all: : skip : } * Do you favor deterministic or small automata? The translation procedure can be controled by a few switches. A first set of options specifies the intent of the translation: whenever possible, would you prefer a small automaton or a deterministic automaton? #+BEGIN_SRC sh :results verbatim :exports results ltl2tgba --help | sed -n '/Translation intent:/,/^$/p' | sed '1d;$d' #+END_SRC #+RESULTS: : -a, --any no preference : -D, --deterministic prefer deterministic automata : --small prefer small automata (default) The =--any= option tells the translator that it should not target any particular form of result: any automaton denoting the given formula is OK. This effectively disables post-processings and speeds up the translation. With the =-D= option, the translator will /attempt/ to produce a deterministic automaton, even if this requires a lot of states. =ltl2tgba= knows how to produce the minimal deterministic Büchi automaton for any obligation property (this includes safety properties). With the =--small= option (the default), the translator will not produce a deterministic automaton when it knows how to build smaller automaton. An example formula where the difference between =-D= and =--small= is flagrant is =Ga|Gb|Gc=: #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba 'Ga|Gb|Gc' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1"] 1 -> 2 [label="b\n"] 1 -> 3 [label="c\n"] 1 -> 4 [label="a\n"] 2 [label="2"] 2 -> 2 [label="b\n"] 3 [label="3"] 3 -> 3 [label="c\n"] 4 [label="4"] 4 -> 4 [label="a\n"] } #+end_example #+NAME: gagbgc1 #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba "Ga|Gb|Gc" | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: gagbgc1 #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1"] 1 -> 2 [label="c\\n"] 1 -> 3 [label="b\\n"] 1 -> 4 [label="a\\n"] 2 [label="2"] 2 -> 2 [label="c\\n"] 3 [label="3"] 3 -> 3 [label="b\\n"] 4 [label="4"] 4 -> 4 [label="a\\n"] } #+end_example #+BEGIN_SRC dot :file gagbgc1.png :cmdline -Tpng :var txt=gagbgc1 :exports results $txt #+END_SRC #+RESULTS: [[file:gagbgc1.png]] #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba -D 'Ga|Gb|Gc' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="6"] 1 -> 1 [label="a & b & c\n{Acc[1]}"] 1 -> 2 [label="b & c & !a\n{Acc[1]}"] 1 -> 3 [label="a & c & !b\n{Acc[1]}"] 1 -> 4 [label="c & !a & !b\n{Acc[1]}"] 1 -> 5 [label="a & b & !c\n{Acc[1]}"] 1 -> 6 [label="b & !a & !c\n{Acc[1]}"] 1 -> 7 [label="a & !b & !c\n{Acc[1]}"] 2 [label="2"] 2 -> 2 [label="b & c\n{Acc[1]}"] 2 -> 4 [label="c & !b\n{Acc[1]}"] 2 -> 6 [label="b & !c\n{Acc[1]}"] 3 [label="4"] 3 -> 3 [label="a & c\n{Acc[1]}"] 3 -> 4 [label="c & !a\n{Acc[1]}"] 3 -> 7 [label="a & !c\n{Acc[1]}"] 4 [label="1"] 4 -> 4 [label="c\n{Acc[1]}"] 5 [label="5"] 5 -> 5 [label="a & b\n{Acc[1]}"] 5 -> 6 [label="b & !a\n{Acc[1]}"] 5 -> 7 [label="a & !b\n{Acc[1]}"] 6 [label="3"] 6 -> 6 [label="b\n{Acc[1]}"] 7 [label="0"] 7 -> 7 [label="a\n{Acc[1]}"] } #+end_example #+NAME: gagbgc2 #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba -D 'Ga|Gb|Gc' | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: gagbgc2 #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="6"] 1 -> 1 [label="a & b & c\\n{Acc[1]}"] 1 -> 2 [label="b & c & !a\\n{Acc[1]}"] 1 -> 3 [label="a & c & !b\\n{Acc[1]}"] 1 -> 4 [label="c & !a & !b\\n{Acc[1]}"] 1 -> 5 [label="a & b & !c\\n{Acc[1]}"] 1 -> 6 [label="b & !a & !c\\n{Acc[1]}"] 1 -> 7 [label="a & !b & !c\\n{Acc[1]}"] 2 [label="1"] 2 -> 2 [label="b & c\\n{Acc[1]}"] 2 -> 4 [label="c & !b\\n{Acc[1]}"] 2 -> 6 [label="b & !c\\n{Acc[1]}"] 3 [label="2"] 3 -> 3 [label="a & c\\n{Acc[1]}"] 3 -> 4 [label="c & !a\\n{Acc[1]}"] 3 -> 7 [label="a & !c\\n{Acc[1]}"] 4 [label="0"] 4 -> 4 [label="c\\n{Acc[1]}"] 5 [label="4"] 5 -> 5 [label="a & b\\n{Acc[1]}"] 5 -> 6 [label="b & !a\\n{Acc[1]}"] 5 -> 7 [label="a & !b\\n{Acc[1]}"] 6 [label="3"] 6 -> 6 [label="b\\n{Acc[1]}"] 7 [label="5"] 7 -> 7 [label="a\\n{Acc[1]}"] } #+end_example #+BEGIN_SRC dot :file gagbgc2.png :cmdline -Tpng :var txt=gagbgc2 :exports results $txt #+END_SRC #+RESULTS: [[file:gagbgc2.png]] You can augment the number of terms in the disjunction to magnify the difference. For N terms, the =--small= automaton has N+1 states, while the =--deterministic= automaton needs 2^N-1 states. A last parameter that can be used to tune the translation is the amount of pre- and post-processing performed. These two steps can be adjusted via a common set of switches: #+BEGIN_SRC sh :results verbatim :exports results ltl2tgba --help | sed -n '/Optimization level:/,/^$/p' | sed '1d;$d' #+END_SRC #+RESULTS: : --high all available optimizations (slow, default) : --low minimal optimizations (fast) : --medium moderate optimizations Pre-processings are rewritings done on the LTL formulas, usually to reduce its size, but mainly to put it in a form that will help the translator (for instance =F(a|b)= is easier to translate than =F(a)|F(b)=). At =--low= level, only simple syntactic rewritings are performed. At =--medium= level, additional simplifications based on syntactic implications are performed. At =--high= level, language containment is used instead of syntactic implications. Post-processings are cleanups and simplifications of the automaton produced by the core translator. The algorithms used during post-processing are - SCC filtering: removing useless strongly connected components, and useless acceptance sets. - direct simulation: merge states based on suffix inclusion. - iterated simulations: merge states based on suffix inclusion, or prefix inclusion, in a loop. - WDBA minimization: determinize and minimize automata representing obligation properties. - degeneralization: convert a TGBA into a BA The chaining of these various algorithms depends on the selected combination of optimization level (=--low=, =--medium=, =--high=), translation intent (=--small=, =--deterministic=) and type of automaton desired (=--tgba=, =--ba=). A notable configuration is =--any --low=, which will produce a TGBA as fast as possible. In this case, post-processing is disabled, and only syntactic rewritings are performed. This can be used for satisfiability checking, although in this context even building an automaton is overkill (you only need an accepted run). Finally, it should be noted that the default optimization options (=--small --high=) are usually overkill. =--low= will produce good automata most of the time. Most of pattern formulas of [[file:genltl.org][=genltl=]] will be efficiently translated in this configuration (meaning that =--small --high= will not produce a better automaton). If you are planning to generate automata for large family of pattern formulas, it makes sense to experiment with the different settings on a small version of the pattern, and select the lowest setting that satisfies your expectations. * Translating multiple formulas for statistics If multiple formulas are given to =ltl2tgba=, the corresponding automata will be output one after the other. This is not very convenient, since most of these output formats are not designed to represent multiple automata, and tools like =dot= will only display the first one. One situation where passing many formulas to =ltl2tgba= is useful is in combination with the =--stats=FORMAT= option. This option will output statistics about the translated automata instead of the automata themselves. The =FORMAT= string should indicate which statistics should be output, and how they should be output using the following sequence of characters (other characters are output as-is): #+BEGIN_SRC sh :results verbatim :exports results ltl2tgba --help | sed -n '/^ *%/p' #+END_SRC #+RESULTS: : %% a single % : %a number of acceptance sets : %d 1 if the automaton is deterministic, 0 otherwise : %e number of edges : %f the formula, in Spot's syntax : %n number of nondeterministic states : %s number of states : %S number of SCCs : %t number of transitions For instance we can study the size of the automata generated for the right-nested =U= formulas as follows: #+BEGIN_SRC sh :results verbatim :exports both genltl --u-right=1..8 | ltl2tgba -F - --stats '%s states and %e edges for "%f"' #+END_SRC #+RESULTS: : 2 states and 2 edges for "p1" : 2 states and 3 edges for "p1 U p2" : 3 states and 6 edges for "p1 U (p2 U p3)" : 4 states and 10 edges for "p1 U (p2 U (p3 U p4))" : 5 states and 15 edges for "p1 U (p2 U (p3 U (p4 U p5)))" : 6 states and 21 edges for "p1 U (p2 U (p3 U (p4 U (p5 U p6))))" : 7 states and 28 edges for "p1 U (p2 U (p3 U (p4 U (p5 U (p6 U p7)))))" : 8 states and 36 edges for "p1 U (p2 U (p3 U (p4 U (p5 U (p6 U (p7 U p8))))))" Here =-F -= means that formulas should be read from the standard input. When computing the size of an automaton, we distinguish /transitions/ and /edges/. An edge between two states is labeled by a Boolean formula and may in fact represent several transitions labeled by compatible Boolean assignment. For instance if the atomic propositions are =x= and =y=, an edge labeled by the formula =!x= actually represents two transitions labeled respectively with =!x&y= and =!x&!y=. Two automata with the same structures (states and edges) but differing labels, may have a different count of transitions, e.g., if one has more restricted labels. * Building Monitors In addition to TGBA and BA, =ltl2tgba= can output /monitor/ using the =-M= option. These are finite automata that accept all prefixes of a formula. The idea is that you can use these automata to monitor a system as it is running, and report a violation as soon as no compatible outgoing transition exist. =ltl2tgba -M= may output non-deterministic monitors while =ltl2tgba -MD= (short for =--monitor --deterministic=) will output the minimal deterministic monitor for the given formula. #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba -M '(Xa & Fb) | Gc' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1", peripheries=2] 1 -> 2 [label="1\n"] 1 -> 3 [label="c\n"] 2 [label="2", peripheries=2] 2 -> 4 [label="a\n"] 3 [label="3", peripheries=2] 3 -> 3 [label="c\n"] 4 [label="4", peripheries=2] 4 -> 4 [label="1\n"] } #+end_example #+NAME: monitor1 #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba -M '(Xa & Fb) | Gc' | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: monitor1 #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1", peripheries=2] 1 -> 2 [label="1\\n"] 1 -> 3 [label="c\\n"] 2 [label="2", peripheries=2] 2 -> 4 [label="a\\n"] 3 [label="3", peripheries=2] 3 -> 3 [label="c\\n"] 4 [label="4", peripheries=2] 4 -> 4 [label="1\\n"] } #+end_example #+BEGIN_SRC dot :file monitor1.png :cmdline -Tpng :var txt=monitor1 :exports results $txt #+END_SRC #+RESULTS: [[file:monitor1.png]] #+BEGIN_SRC sh :results verbatim :exports code ltl2tgba -M '(Xa & Fb) | Gc' #+END_SRC #+RESULTS: #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1", peripheries=2] 1 -> 2 [label="1\n"] 1 -> 3 [label="c\n"] 2 [label="2", peripheries=2] 2 -> 4 [label="a\n"] 3 [label="3", peripheries=2] 3 -> 3 [label="c\n"] 4 [label="4", peripheries=2] 4 -> 4 [label="1\n"] } #+end_example #+NAME: monitor2 #+BEGIN_SRC sh :results verbatim :exports none ltl2tgba -MD '(Xa & Fb) | Gc' | sed 's/\\/\\\\/' #+END_SRC #+RESULTS: monitor2 #+begin_example digraph G { 0 [label="", style=invis, height=0] 0 -> 1 1 [label="1", peripheries=2] 1 -> 2 [label="c\\n"] 1 -> 3 [label="!c\\n"] 2 [label="4", peripheries=2] 2 -> 4 [label="a\\n"] 2 -> 5 [label="c & !a\\n"] 3 [label="3", peripheries=2] 3 -> 4 [label="a\\n"] 4 [label="2", peripheries=2] 4 -> 4 [label="1\\n"] 5 [label="0", peripheries=2] 5 -> 5 [label="c\\n"] } #+end_example #+BEGIN_SRC dot :file monitor2.png :cmdline -Tpng :var txt=monitor2 :exports results $txt #+END_SRC #+RESULTS: [[file:monitor2.png]] Because they accept all finite executions that could be extended to match the formula, monitor cannot be used to check for eventualities such as =F(a)=. Any finite execution can be extended to match =F(a)=. # Local variables: # eval: (setenv "PATH" (concat "../../src/bin" path-separator (getenv "PATH"))) # eval: (org-babel-do-load-languages 'org-babel-load-languages '((sh . t) (dot . t))) # eval: (setq org-confirm-babel-evaluate nil) # End: # LocalWords: ltl tgba num toc PSL Büchi automata SRC GFb invis Acc # LocalWords: ltlfilt filenames GraphViz vectorial pdf Tpdf dotex # LocalWords: sed png cmdline Tpng txt iff GFa ba utf UTF lbtt Fb # LocalWords: GraphViz's LBTT's neverclaim SPOT's init goto fi Gb # LocalWords: controled Gc gagbgc disjunction pre rewritings SCC Xa # LocalWords: WDBA determinize degeneralization satisfiability SCCs # LocalWords: genltl nondeterministic eval setenv concat getenv # LocalWords: setq