{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import spot\n", "spot.setup()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's build a small automaton to use as example." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "G\n", "\n", "\n", "\n", "0\n", "\n", "0\n", "\n", "\n", "I->0\n", "\n", "\n", "\n", "\n", "1\n", "\n", "1\n", "\n", "\n", "0->1\n", "\n", "\n", "!a\n", "\n", "\n", "2\n", "\n", "2\n", "\n", "\n", "1->2\n", "\n", "\n", "a\n", "\n", "\n", "3\n", "\n", "3\n", "\n", "\n", "1->3\n", "\n", "\n", "!a\n", "\n", "\n", "4\n", "\n", "4\n", "\n", "\n", "1->4\n", "\n", "\n", "!a\n", "\n", "\n", "2->2\n", "\n", "\n", "a & b\n", "\n", "\n", "\n", "2->3\n", "\n", "\n", "!a & b\n", "\n", "\n", "5\n", "\n", "5\n", "\n", "\n", "2->5\n", "\n", "\n", "!a & b\n", "\n", "\n", "3->2\n", "\n", "\n", "a & b\n", "\n", "\n", "\n", "3->3\n", "\n", "\n", "!a & b\n", "\n", "\n", "4->4\n", "\n", "\n", "!a & !b\n", "\n", "\n", "\n", "5->4\n", "\n", "\n", "!a & b\n", "\n", "\n", "\n" ], "text/plain": [ " *' at 0x7ff774426a50> >" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aut = spot.translate('!a & G(Fa <-> XXb)'); aut" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Build an accepting run:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Prefix:\n", " 0\n", " | !a\n", " 1\n", " | a\n", "Cycle:\n", " 2\n", " | a & b\t{0}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "run = aut.accepting_run(); run" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Accessing the contents of the run can be done via the `prefix` and `cycle` lists." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "!a\n", "{0}\n" ] } ], "source": [ "print(spot.bdd_format_formula(aut.get_dict(), run.prefix[0].label))\n", "print(run.cycle[0].acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To convert the run into a word, using `spot.twa_word()`. Note that our runs are labeled by Boolean formulas that are not necessarily a conjunction of all involved litterals. The word is just the projection of the run on its labels." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "!a; a; cycle{a & b}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "word = spot.twa_word(run); word" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A word can be represented as a collection of signals (one for each atomic proposition). The cycle part is shown twice." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "abprefixcycle\n", "cycle" ], "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "word.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Accessing the different formulas (stored as BDDs) can be done again via the `prefix` and `cycle` lists." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "!a\n", "a\n", "a & b\n" ] } ], "source": [ "print(spot.bdd_format_formula(aut.get_dict(), word.prefix[0]))\n", "print(spot.bdd_format_formula(aut.get_dict(), word.prefix[1]))\n", "print(spot.bdd_format_formula(aut.get_dict(), word.cycle[0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calling `simplifify()` will produce a shorter word that is compatible with the original word. For instance in the above word, the initial `a` is compatible with both `a & b` and `a & !b`. The word obtained by restricting `a` to `a & b` is therefore still accepted, allowing us to remove the prefix." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "!a; cycle{a & b}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "word.simplify()\n", "word" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Such a simplified word can be created directly from the automaton:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "!a; cycle{a & b}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aut.accepting_word()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Words can be created using the `parse_word` function:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a; b; cycle{a & b}\n", "cycle{(a & bb) | (aaa & bac) | (bac & bbb)}\n", "a; b; b; qiwuei; \"a;b&c;a\"; cycle{a}\n" ] } ], "source": [ "print(spot.parse_word('a; b; cycle{a&b}'))\n", "print(spot.parse_word('cycle{a&bb|bac&(aaa|bbb)}'))\n", "print(spot.parse_word('a; b;b; qiwuei;\"a;b&c;a\" ;cycle{a}'))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "a; a & b; cycle{!a & !b; !a & b}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# make sure that we can parse a word back after it has been printed\n", "w = spot.parse_word(str(spot.parse_word('a;b&a;cycle{!a&!b;!a&b}'))); w" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "abprefixcycle\n", "cycle" ], "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Words can be easily converted as automata" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", "\n", "\n", "G\n", "\n", "\n", "\n", "0\n", "\n", "0\n", "\n", "\n", "I->0\n", "\n", "\n", "\n", "\n", "1\n", "\n", "1\n", "\n", "\n", "0->1\n", "\n", "\n", "a\n", "\n", "\n", "2\n", "\n", "2\n", "\n", "\n", "1->2\n", "\n", "\n", "a & b\n", "\n", "\n", "3\n", "\n", "3\n", "\n", "\n", "2->3\n", "\n", "\n", "!a & !b\n", "\n", "\n", "3->2\n", "\n", "\n", "!a & b\n", "\n", "\n", "\n" ], "text/plain": [ " *' at 0x7ff77439aae0> >" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "w.as_automaton()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }