// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6), // département Systèmes Répartis Coopératifs (SRC), Université Pierre // et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with Spot; see the file COPYING. If not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA. /// FIXME: /// * Test some heuristics on the order of visit of the successors in the blue /// dfs: /// - favorize the arcs conducting to the blue stack (the states of color /// cyan) /// - in this category, favorize the labelled arcs /// - for the remaining ones, favorize the arcs labelled by the greatest /// number of new acceptance conditions (notice that this number may evolve /// after the visit of previous successors). /// /// * Add a bit-state hashing version. //#define TRACE #include #ifdef TRACE #define trace std::cerr #else #define trace while (0) std::cerr #endif #include #include #include "misc/hash.hh" #include "tgba/tgba.hh" #include "emptiness.hh" #include "emptiness_stats.hh" #include "tau03opt.hh" #include "weight.hh" #include "ndfs_result.hxx" namespace spot { namespace { enum color {WHITE, CYAN, BLUE}; /// \brief Emptiness checker on spot::tgba automata having at most one /// acceptance condition (i.e. a TBA). template class tau03_opt_search : public emptiness_check, public ec_statistics { public: /// \brief Initialize the search algorithm on the automaton \a a tau03_opt_search(const tgba *a, size_t size, option_map o) : emptiness_check(a, o), current_weight(a->neg_acceptance_conditions()), h(size), all_acc(a->all_acceptance_conditions()), use_condition_stack(o.get("condstack")), use_weights(o.get("weights", 1)), use_red_weights(use_weights && o.get("redweights", 1)) { } virtual ~tau03_opt_search() { // Release all iterators on the stacks. while (!st_blue.empty()) { h.pop_notify(st_blue.front().s); delete st_blue.front().it; st_blue.pop_front(); } while (!st_red.empty()) { h.pop_notify(st_red.front().s); delete st_red.front().it; st_red.pop_front(); } } /// \brief Perform an emptiness check. /// /// \return non null pointer iff the algorithm has found an /// accepting path. virtual emptiness_check_result* check() { if (!st_blue.empty()) return 0; assert(st_red.empty()); const state* s0 = a_->get_init_state(); inc_states(); h.add_new_state(s0, CYAN, current_weight); push(st_blue, s0, bddfalse, bddfalse); if (dfs_blue()) return new ndfs_result, heap>(*this); return 0; } virtual std::ostream& print_stats(std::ostream &os) const { os << states() << " distinct nodes visited" << std::endl; os << transitions() << " transitions explored" << std::endl; os << max_depth() << " nodes for the maximal stack depth" << std::endl; return os; } const heap& get_heap() const { return h; } const stack_type& get_st_blue() const { return st_blue; } const stack_type& get_st_red() const { return st_red; } private: void push(stack_type& st, const state* s, const bdd& label, const bdd& acc) { inc_depth(); tgba_succ_iterator* i = a_->succ_iter(s); i->first(); st.push_front(stack_item(s, i, label, acc)); } void pop(stack_type& st) { dec_depth(); delete st.front().it; st.pop_front(); } /// \brief weight of the state on top of the blue stack. weight current_weight; /// \brief Stack of the blue dfs. stack_type st_blue; /// \brief Stack of the red dfs. stack_type st_red; /// \brief Map where each visited state is colored /// by the last dfs visiting it. heap h; /// The unique acceptance condition of the automaton \a a. bdd all_acc; /// Whether to use the "condition stack". bool use_condition_stack; /// Whether to use weights to abort earlier. bool use_weights; /// Whether to use weights in the red dfs. bool use_red_weights; bool dfs_blue() { while (!st_blue.empty()) { stack_item& f = st_blue.front(); trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c_prime = h.get_color_ref(s_prime); if (c_prime.is_white()) { trace << " It is white, go down" << std::endl; if (use_weights) current_weight += acc; inc_states(); h.add_new_state(s_prime, CYAN, current_weight); push(st_blue, s_prime, label, acc); } else { typename heap::color_ref c = h.get_color_ref(f.s); assert(!c.is_white()); if (c_prime.get_color() == CYAN && all_acc == ((current_weight - c_prime.get_weight()) | c.get_acc() | acc | c_prime.get_acc())) { trace << " It is cyan and acceptance condition " << "is reached, report cycle" << std::endl; c_prime.cumulate_acc(c.get_acc() | acc); push(st_red, s_prime, label, acc); return true; } else { trace << " It is cyan or blue and"; bdd acu = acc | c.get_acc(); if ((c_prime.get_acc() & acu) != acu) { trace << " a propagation is needed, " << "start a red dfs" << std::endl; c_prime.cumulate_acc(acu); push(st_red, s_prime, label, acc); if (dfs_red(acu)) return true; } else { trace << " no propagation is needed, pop it." << std::endl; h.pop_notify(s_prime); } } } } else // Backtrack the edge // (predecessor of f.s in st_blue, , f.s) { trace << " All the successors have been visited" << std::endl; stack_item f_dest(f); pop(st_blue); if (use_weights) current_weight -= f_dest.acc; typename heap::color_ref c_prime = h.get_color_ref(f_dest.s); assert(!c_prime.is_white()); c_prime.set_color(BLUE); if (!st_blue.empty()) { typename heap::color_ref c = h.get_color_ref(st_blue.front().s); assert(!c.is_white()); bdd acu = f_dest.acc | c.get_acc(); if ((c_prime.get_acc() & acu) != acu) { trace << " The arc from " << a_->format_state(st_blue.front().s) << " to the current state implies to " << " start a red dfs" << std::endl; c_prime.cumulate_acc(acu); push(st_red, f_dest.s, f_dest.label, f_dest.acc); if (dfs_red(acu)) return true; } else { trace << " Pop it" << std::endl; h.pop_notify(f_dest.s); } } else { trace << " Pop it" << std::endl; h.pop_notify(f_dest.s); } } } return false; } bool dfs_red(bdd acu) { assert(!st_red.empty()); // These are useful only when USE_CONDITION_STACK is set. typedef std::pair cond_level; std::stack condition_stack; unsigned depth = 1; while (!st_red.empty()) { stack_item& f = st_red.front(); trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl; if (!f.it->done()) { const state *s_prime = f.it->current_state(); trace << " Visit the successor: " << a_->format_state(s_prime) << std::endl; bdd label = f.it->current_condition(); bdd acc = f.it->current_acceptance_conditions(); // Go down the edge (f.s, , s_prime) f.it->next(); inc_transitions(); typename heap::color_ref c_prime = h.get_color_ref(s_prime); if (c_prime.is_white()) { trace << " It is white, pop it" << std::endl; delete s_prime; } else if (c_prime.get_color() == CYAN && (all_acc == ((use_red_weights ? (current_weight - c_prime.get_weight()) : bddfalse) | c_prime.get_acc() | acu))) { trace << " It is cyan and acceptance condition " << "is reached, report cycle" << std::endl; c_prime.cumulate_acc(acu); push(st_red, s_prime, label, acc); return true; } else if ((c_prime.get_acc() & acu) != acu) { trace << " It is cyan or blue and propagation " << "is needed, go down" << std::endl; c_prime.cumulate_acc(acu); push(st_red, s_prime, label, acc); if (use_condition_stack) { bdd old = acu; acu = c_prime.get_acc(); condition_stack.push(cond_level(acu - old, depth)); } ++depth; } else { trace << " It is cyan or blue and no propagation " << "is needed , pop it" << std::endl; h.pop_notify(s_prime); } } else // Backtrack { trace << " All the successors have been visited, pop it" << std::endl; h.pop_notify(f.s); pop(st_red); --depth; if (use_condition_stack) { while (!condition_stack.empty() && condition_stack.top().second == depth) { acu -= condition_stack.top().first; condition_stack.pop(); } } } } assert(depth == 0); assert(condition_stack.empty()); return false; } }; class explicit_tau03_opt_search_heap { typedef Sgi::hash_map, state_ptr_hash, state_ptr_equal> hcyan_type; typedef Sgi::hash_map, state_ptr_hash, state_ptr_equal> hash_type; public: class color_ref { public: color_ref(hash_type* h, hcyan_type* hc, const state* s, const weight* w, bdd* a) : is_cyan(true), w(w), ph(h), phc(hc), ps(s), acc(a) { } color_ref(color* c, bdd* a) : is_cyan(false), pc(c), acc(a) { } color get_color() const { if (is_cyan) return CYAN; return *pc; } const weight& get_weight() const { assert(is_cyan); return *w; } void set_color(color c) { assert(!is_white()); if (is_cyan) { assert(c != CYAN); std::pair p; p = ph->insert(std::make_pair(ps, std::make_pair(c, *acc))); assert(p.second); acc = &(p.first->second.second); int i = phc->erase(ps); assert(i==1); (void)i; } else { *pc=c; } } const bdd& get_acc() const { assert(!is_white()); return *acc; } void cumulate_acc(const bdd& a) { assert(!is_white()); *acc |= a; } bool is_white() const { return !is_cyan && pc == 0; } private: bool is_cyan; const weight* w; // point to the weight of a state in hcyan hash_type* ph; //point to the main hash table hcyan_type* phc; // point to the hash table hcyan const state* ps; // point to the state in hcyan color *pc; // point to the color of a state stored in main hash table bdd* acc; // point to the acc set of a state stored in main hash table // or hcyan }; explicit_tau03_opt_search_heap(size_t) { } ~explicit_tau03_opt_search_heap() { hcyan_type::const_iterator sc = hc.begin(); while (sc != hc.end()) { const state* ptr = sc->first; ++sc; delete ptr; } hash_type::const_iterator s = h.begin(); while (s != h.end()) { const state* ptr = s->first; ++s; delete ptr; } } color_ref get_color_ref(const state*& s) { hcyan_type::iterator ic = hc.find(s); if (ic==hc.end()) { hash_type::iterator it = h.find(s); if (it==h.end()) // white state return color_ref(0, 0); if (s!=it->first) { delete s; s = it->first; } // blue or red state return color_ref(&(it->second.first), &(it->second.second)); } if (s!=ic->first) { delete s; s = ic->first; } // cyan state return color_ref(&h, &hc, ic->first, &(ic->second.first), &(ic->second.second)); } void add_new_state(const state* s, color c) { assert(hc.find(s)==hc.end() && h.find(s)==h.end()); assert(c != CYAN); h.insert(std::make_pair(s, std::make_pair(c, bddfalse))); } void add_new_state(const state* s, color c, const weight& w) { assert(hc.find(s)==hc.end() && h.find(s)==h.end()); assert(c == CYAN); (void)c; hc.insert(std::make_pair(s, std::make_pair(w, bddfalse))); } void pop_notify(const state*) const { } bool has_been_visited(const state* s) const { hcyan_type::const_iterator ic = hc.find(s); if (ic == hc.end()) { hash_type::const_iterator it = h.find(s); return (it != h.end()); } return true; } enum { Has_Size = 1 }; int size() const { return h.size() + hc.size(); } private: // associate to each blue and red state its color and its acceptance set hash_type h; // associate to each cyan state its weight and its acceptance set hcyan_type hc; }; } // anonymous emptiness_check* explicit_tau03_opt_search(const tgba *a, option_map o) { return new tau03_opt_search(a, 0, o); } }