// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include "powerset.hh"
#include "misc/hash.hh"
#include "tgbaalgos/powerset.hh"
#include "tgbaalgos/sccinfo.hh"
#include "tgbaalgos/cycles.hh"
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/product.hh"
#include "tgba/bddprint.hh"
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/sccfilter.hh"
#include "tgbaalgos/ltl2tgba_fm.hh"
#include "tgbaalgos/dtgbacomp.hh"
#include "ltlast/unop.hh"
#include "misc/bitvect.hh"
#include "misc/bddlt.hh"
namespace spot
{
namespace
{
static unsigned
number_of_variables(bdd vin)
{
unsigned nap = 0;
int v = vin.id();
while (v != 1)
{
v = bdd_high(v);
++nap;
}
return nap;
}
static power_map::power_state
bv_to_ps(const bitvect* in)
{
power_map::power_state ps;
unsigned ns = in->size();
for (unsigned pos = 0; pos < ns; ++pos)
if (in->get(pos))
ps.insert(pos);
return ps;
}
struct bv_hash
{
size_t operator()(const bitvect* bv) const
{
return bv->hash();
}
};
struct bv_equal
{
bool operator()(const bitvect* bvl, const bitvect* bvr) const
{
return *bvl == *bvr;
}
};
}
twa_graph_ptr
tgba_powerset(const const_twa_graph_ptr& aut, power_map& pm, bool merge)
{
bdd allap = bddtrue;
{
typedef std::set sup_map;
sup_map sup;
// Record occurrences of all guards
for (auto& t: aut->transitions())
sup.emplace(t.cond);
for (auto& i: sup)
allap &= bdd_support(i);
}
unsigned nap = number_of_variables(allap);
// Call this before aut->num_states(), since it might add a state.
unsigned init_num = aut->get_init_state_number();
unsigned ns = aut->num_states();
assert(ns > 0);
if ((-1UL / ns) >> nap == 0)
throw std::runtime_error("too many atomic propositions (or states)");
// Build a correspondence between conjunctions of APs and unsigned
// indexes.
std::vector num2bdd;
num2bdd.reserve(1UL << nap);
std::map bdd2num;
bdd all = bddtrue;
while (all != bddfalse)
{
bdd one = bdd_satoneset(all, allap, bddfalse);
all -= one;
bdd2num.emplace(one, num2bdd.size());
num2bdd.push_back(one);
}
size_t nc = num2bdd.size(); // number of conditions
assert(nc == (1UL << nap));
// An array of bit vectors of size 'ns'. Each original state is
// represented by 'nc' bitvectors representing the possible
// destinations for each condition.
auto bv = std::unique_ptr(make_bitvect_array(ns, ns * nc));
for (unsigned src = 0; src < ns; ++src)
{
size_t base = src * nc;
for (auto& t: aut->out(src))
{
bdd all = t.cond;
while (all != bddfalse)
{
bdd one = bdd_satoneset(all, allap, bddfalse);
all -= one;
unsigned num = bdd2num[one];
bv->at(base + num).set(t.dst);
}
}
}
typedef power_map::power_state power_state;
typedef std::unordered_map power_set;
power_set seen;
std::vectortoclean;
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
{
auto bvi = make_bitvect(ns);
bvi->set(init_num);
power_state ps{init_num};
unsigned num = res->new_state();
res->set_init_state(num);
seen[bvi] = num;
assert(pm.map_.size() == num);
pm.map_.emplace_back(std::move(ps));
toclean.push_back(bvi);
}
// outgoing map
auto om = std::unique_ptr(make_bitvect_array(ns, nc));
for (unsigned src_num = 0; src_num < res->num_states(); ++src_num)
{
om->clear_all();
const power_state& src = pm.states_of(src_num);
for (auto s: src)
{
size_t base = s * nc;
for (unsigned c = 0; c < nc; ++c)
om->at(c) |= bv->at(base + c);
}
for (unsigned c = 0; c < nc; ++c)
{
auto dst = &om->at(c);
if (dst->is_fully_clear())
continue;
auto i = seen.find(dst);
unsigned dst_num;
if (i != seen.end())
{
dst_num = i->second;
}
else
{
dst_num = res->new_state();
auto dst2 = dst->clone();
seen[dst2] = dst_num;
toclean.push_back(dst2);
auto ps = bv_to_ps(dst);
assert(pm.map_.size() == dst_num);
pm.map_.emplace_back(std::move(ps));
}
res->new_transition(src_num, dst_num, num2bdd[c]);
}
}
for (auto v: toclean)
delete v;
if (merge)
res->merge_transitions();
return res;
}
twa_graph_ptr
tgba_powerset(const const_twa_graph_ptr& aut)
{
power_map pm;
return tgba_powerset(aut, pm);
}
namespace
{
class fix_scc_acceptance final: protected enumerate_cycles
{
public:
typedef dfs_stack::const_iterator cycle_iter;
typedef tgba_graph_trans_data trans;
typedef std::set trans_set;
typedef std::vector set_set;
protected:
const_twa_graph_ptr ref_;
power_map& refmap_;
trans_set reject_; // set of rejecting transitions
set_set accept_; // set of cycles that are accepting
trans_set all_; // all non rejecting transitions
unsigned threshold_; // maximum count of enumerated cycles
unsigned cycles_left_; // count of cycles left to explore
public:
fix_scc_acceptance(const scc_info& sm, const_twa_graph_ptr ref,
power_map& refmap, unsigned threshold)
: enumerate_cycles(sm), ref_(ref), refmap_(refmap),
threshold_(threshold)
{
}
bool fix_scc(const int m)
{
reject_.clear();
accept_.clear();
cycles_left_ = threshold_;
run(m);
// std::cerr << "SCC #" << m << '\n';
// std::cerr << "REJECT: ";
// print_set(std::cerr, reject_) << '\n';
// std::cerr << "ALL: ";
// print_set(std::cerr, all_) << '\n';
// for (set_set::const_iterator j = accept_.begin();
// j != accept_.end(); ++j)
// {
// std::cerr << "ACCEPT: ";
// print_set(std::cerr, *j) << '\n';
// }
auto acc = aut_->acc().all_sets();
for (auto i: all_)
i->acc = acc;
return threshold_ != 0 && cycles_left_ == 0;
}
bool is_cycle_accepting(cycle_iter begin, trans_set& ts) const
{
auto a = std::const_pointer_cast(aut_);
// Build an automaton representing this loop.
auto loop_a = make_twa_graph(aut_->get_dict());
int loop_size = std::distance(begin, dfs_.end());
loop_a->new_states(loop_size);
int n;
cycle_iter i;
for (n = 1, i = begin; n <= loop_size; ++n, ++i)
{
trans* t = &a->trans_data(i->succ);
loop_a->new_transition(n - 1, n % loop_size, t->cond);
if (reject_.find(t) == reject_.end())
ts.insert(t);
}
assert(i == dfs_.end());
unsigned loop_a_init = loop_a->get_init_state_number();
assert(loop_a_init == 0);
// Check if the loop is accepting in the original automaton.
bool accepting = false;
// Iterate on each original state corresponding to the
// start of the loop in the determinized automaton.
for (auto s: refmap_.states_of(begin->s))
{
// Check the product between LOOP_A, and ORIG_A starting
// in S.
if (!product(loop_a, ref_, loop_a_init, s)->is_empty())
{
accepting = true;
break;
}
}
return accepting;
}
std::ostream&
print_set(std::ostream& o, const trans_set& s) const
{
o << "{ ";
for (auto i: s)
o << i << ' ';
o << '}';
return o;
}
virtual bool
cycle_found(unsigned start) override
{
cycle_iter i = dfs_.begin();
while (i->s != start)
++i;
trans_set ts;
bool is_acc = is_cycle_accepting(i, ts);
do
++i;
while (i != dfs_.end());
if (is_acc)
{
accept_.push_back(ts);
all_.insert(ts.begin(), ts.end());
}
else
{
for (auto t: ts)
{
reject_.insert(t);
for (auto& j: accept_)
j.erase(t);
all_.erase(t);
}
}
// Abort this algorithm if we have seen too much cycles, i.e.,
// when cycle_left_ *reaches* 0. (If cycle_left_ == 0, that
// means we had no limit.)
return (cycles_left_ == 0) || --cycles_left_;
}
};
static bool
fix_dba_acceptance(twa_graph_ptr det,
const_twa_graph_ptr ref, power_map& refmap,
unsigned threshold)
{
det->copy_acceptance_of(ref);
scc_info sm(det);
unsigned scc_count = sm.scc_count();
fix_scc_acceptance fsa(sm, ref, refmap, threshold);
for (unsigned m = 0; m < scc_count; ++m)
if (!sm.is_trivial(m))
if (fsa.fix_scc(m))
return true;
return false;
}
}
twa_graph_ptr
tba_determinize(const const_twa_graph_ptr& aut,
unsigned threshold_states, unsigned threshold_cycles)
{
power_map pm;
// Do not merge transitions in the deterministic automaton. If we
// add two self-loops labeled by "a" and "!a", we do not want
// these to be merged as "1" before the acceptance has been fixed.
auto det = tgba_powerset(aut, pm, false);
if ((threshold_states > 0)
&& (pm.map_.size() > aut->num_states() * threshold_states))
return nullptr;
if (fix_dba_acceptance(det, aut, pm, threshold_cycles))
return nullptr;
det->merge_transitions();
return det;
}
twa_graph_ptr
tba_determinize_check(const twa_graph_ptr& aut,
unsigned threshold_states,
unsigned threshold_cycles,
const ltl::formula* f,
const_twa_graph_ptr neg_aut)
{
if (f == 0 && neg_aut == 0)
return 0;
if (aut->acc().num_sets() > 1)
return 0;
auto det = tba_determinize(aut, threshold_states, threshold_cycles);
if (!det)
return nullptr;
if (neg_aut == nullptr)
{
const ltl::formula* neg_f =
ltl::unop::instance(ltl::unop::Not, f->clone());
neg_aut = ltl_to_tgba_fm(neg_f, aut->get_dict());
neg_f->destroy();
// Remove useless SCCs.
neg_aut = scc_filter(neg_aut, true);
}
if (product(det, neg_aut)->is_empty())
// Complement the DBA.
if (product(aut, dtgba_complement(det))->is_empty())
// Finally, we are now sure that it was safe
// to determinize the automaton.
return det;
return aut;
}
}