#!/usr/bin/python3 # -*- mode: python; coding: utf-8 -*- # Copyright (C) 2020, 2022 Laboratoire de Recherche et Développement de # l'EPITA. # # This file is part of Spot, a model checking library. # # Spot is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Spot is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public # License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import spot, buddy from unittest import TestCase tc = TestCase() g = spot.automaton("""HOA: v1 States: 9 Start: 0 AP: 2 "a" "b" acc-name: Streett 1 Acceptance: 2 Fin(0) | Inf(1) properties: trans-labels explicit-labels state-acc spot-state-player: 0 1 0 1 0 1 0 1 1 --BODY-- State: 0 {1} [1] 1 [1] 3 State: 1 {1} [1] 2 State: 2 {1} [0] 8 State: 3 {1} [1] 4 State: 4 {1} [0] 5 State: 5 {1} [0] 6 State: 6 {1} [1] 7 State: 7 State: 8 {1} [0] 2 --END--""") tc.assertFalse(spot.solve_parity_game(g)) s = spot.highlight_strategy(g).to_str("HOA", "1.1") tc.assertEqual(s, """HOA: v1.1 States: 9 Start: 0 AP: 2 "a" "b" acc-name: Streett 1 Acceptance: 2 Fin(0) | Inf(1) properties: trans-labels explicit-labels state-acc !complete properties: !deterministic exist-branch spot.highlight.states: 0 5 1 4 2 4 3 5 4 5 5 5 6 5 7 5 8 4 spot.highlight.edges: 2 5 3 4 6 5 8 5 9 4 spot.state-player: 0 1 0 1 0 1 0 1 1 --BODY-- State: 0 {1} [1] 1 [1] 3 State: 1 {1} [1] 2 State: 2 {1} [0] 8 State: 3 {1} [1] 4 State: 4 {1} [0] 5 State: 5 {1} [0] 6 State: 6 {1} [1] 7 State: 7 State: 8 {1} [0] 2 --END--""") # Testing case where parity_game optimization # lead to wrong results si = spot.synthesis_info() game = spot.automaton("""HOA: v1 States: 27 Start: 7 AP: 11 "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" acc-name: parity max odd 3 Acceptance: 3 Fin(2) & (Inf(1) | Fin(0)) properties: trans-labels explicit-labels trans-acc colored properties: deterministic spot-state-player: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 controllable-AP: 0 1 2 3 4 5 6 7 --BODY-- State: 0 [t] 8 {0} State: 1 [8&9] 8 {0} [!8&!10 | !9&!10] 9 {0} [!8&10 | !9&10] 10 {0} State: 2 [8&9] 8 {0} [!8&!10 | !9&!10] 11 {0} [!8&10 | !9&10] 12 {0} State: 3 [8&9] 8 {0} [!9&!10] 13 {0} [!8&10 | !9&10] 14 {0} [!8&9&!10] 15 {0} State: 4 [8&9] 8 {0} [!8&!10 | !9&!10] 16 {0} [!8&!9&10] 17 {0} [!8&9&10] 18 {0} [8&!9&10] 19 {0} State: 5 [8&9] 8 {0} [!9&!10] 20 {0} [!8&10 | !9&10] 21 {0} [!8&9&!10] 22 {0} State: 6 [8&9] 8 {0} [!8&!10 | !9&!10] 23 {0} [!8&!9&10] 24 {0} [!8&9&10] 25 {0} [8&!9&10] 26 {0} State: 7 [8&9] 8 {0} [!9&!10] 13 {0} [!8&9&!10] 15 {0} [!8&!9&10] 17 {0} [!8&9&10] 18 {0} [8&!9&10] 19 {0} State: 8 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1} State: 9 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {2} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2} State: 10 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2} State: 11 [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1} [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {2} State: 12 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {2} [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2} State: 13 [!0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {1} [!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&4&!5&!6&7] 3 {1} [!0&!1&2&3&!4&!5&!6&7] 5 {1} State: 14 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} State: 15 [!0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {1} [!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&4&!5&!6&7] 4 {1} [!0&!1&2&3&!4&!5&!6&7] 6 {1} State: 16 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {1} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} State: 17 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&1&!2&3&!4&!5&!6&7] 6 {1} State: 18 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&1&!2&3&!4&!5&!6&7] 5 {1} State: 19 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1} [!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&1&!2&3&!4&!5&6&!7] 6 {1} State: 20 [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1} [!0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} [!0&!1&2&!3&!4&5&!6&7] 3 {1} State: 21 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} State: 22 [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1} [!0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} [!0&!1&2&!3&!4&5&!6&7] 4 {1} State: 23 [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1} [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} State: 24 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&1&!2&!3&!4&5&!6&7] 4 {1} [!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7] 6 {1} State: 25 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&1&!2&!3&!4&5&!6&7] 3 {1} [!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7] 5 {1} State: 26 [!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1} [!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1} [!0&1&!2&!3&!4&5&6&!7] 4 {1} [!0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7] 6 {1} --END--""") tc.assertTrue(spot.solve_game(game, si)) games = spot.split_edges(game) spot.set_state_players(games, spot.get_state_players(game)) tc.assertTrue(spot.solve_game(games, si)) g = spot.translate("GF(a&X(a)) -> GFb") a = buddy.bdd_ithvar(g.register_ap("a")) b = buddy.bdd_ithvar(g.register_ap("b")) gdpa = spot.tgba_determinize(spot.degeneralize_tba(g), False, True, True, False) spot.change_parity_here(gdpa, spot.parity_kind_max, spot.parity_style_odd) gsdpa = spot.split_2step(gdpa, b, True) spot.colorize_parity_here(gsdpa, True) tc.assertTrue(spot.solve_parity_game(gsdpa)) tc.assertEqual(spot.highlight_strategy(gsdpa).to_str("HOA", "1.1"), """HOA: v1.1 States: 18 Start: 0 AP: 2 "a" "b" acc-name: parity max odd 5 Acceptance: 5 Fin(4) & (Inf(3) | (Fin(2) & (Inf(1) | Fin(0)))) properties: trans-labels explicit-labels trans-acc colored complete properties: deterministic spot.highlight.states: 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 """ +"""10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 spot.highlight.edges: 15 4 17 4 20 4 22 4 24 4 26 4 28 4 30 4 31 4 32 4 33 4 spot.state-player: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 controllable-AP: 1 --BODY-- State: 0 [!0] 7 {0} [0] 8 {0} State: 1 [!0] 9 {3} [0] 10 {3} State: 2 [!0] 11 {1} [0] 12 {1} State: 3 [!0] 9 {3} [0] 13 {4} State: 4 [!0] 11 {1} [0] 14 {2} State: 5 [!0] 15 {3} [0] 16 {3} State: 6 [!0] 15 {3} [0] 17 {4} State: 7 [!1] 1 {0} [1] 2 {0} State: 8 [!1] 3 {0} [1] 4 {0} State: 9 [!1] 1 {3} [1] 5 {3} State: 10 [!1] 3 {3} [1] 6 {3} State: 11 [!1] 2 {1} [1] 2 {3} State: 12 [!1] 4 {1} [1] 4 {3} State: 13 [!1] 3 {4} [1] 4 {4} State: 14 [!1] 4 {2} [1] 4 {3} State: 15 [t] 5 {3} State: 16 [t] 6 {3} State: 17 [t] 4 {4} --END--""" ) # Test the different parity conditions gdpa = spot.tgba_determinize(spot.degeneralize_tba(g), False, True, True, False) g_test = spot.change_parity(gdpa, spot.parity_kind_max, spot.parity_style_odd) g_test_split = spot.split_2step(g_test, b, True) sp = spot.get_state_players(g_test_split) g_test_split_c = spot.colorize_parity(g_test_split) spot.set_state_players(g_test_split_c, sp) tc.assertTrue(spot.solve_parity_game(g_test_split_c)) c_strat = spot.get_strategy(g_test_split_c) # All versions of parity need to result in the same strategy for kind in [spot.parity_kind_min, spot.parity_kind_max]: for style in [spot.parity_style_even, spot.parity_style_odd]: g_test_split1 = spot.change_parity(g_test_split, kind, style) spot.set_state_players(g_test_split1, sp) tc.assertTrue(spot.solve_parity_game(g_test_split1)) c_strat1 = spot.get_strategy(g_test_split1) tc.assertTrue(c_strat == c_strat1) # Test that strategies are not appended # if solve is called multiple times aut = spot.make_twa_graph() aut.set_buchi() aut.new_states(2) aut.new_edge(0,1,buddy.bddtrue, [0]) aut.new_edge(1,0,buddy.bddtrue, []) spot.set_state_players(aut, [False, True]) spot.solve_game(aut) S1 = list(spot.get_strategy(aut)) spot.solve_game(aut) S2 = list(spot.get_strategy(aut)) tc.assertEqual(S1, S2)