// -*- coding: utf-8 -*- // Copyright (C) 2014, 2015 Laboratoire de Recherche et Développement de // l'Epita. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #pragma once #include #include #include #include #include "ltlenv/defaultenv.hh" #include namespace spot { class SPOT_API acc_cond { public: struct mark_t { typedef unsigned value_t; value_t id; mark_t() = default; mark_t(value_t id) : id(id) { } template mark_t(const iterator& begin, const iterator& end) { id = 0U; for (iterator i = begin; i != end; ++i) set(*i); } mark_t(std::initializer_list vals) : mark_t(vals.begin(), vals.end()) { } bool operator==(unsigned o) const { assert(o == 0U); return id == o; } bool operator!=(unsigned o) const { assert(o == 0U); return id != o; } bool operator==(mark_t o) const { return id == o.id; } bool operator!=(mark_t o) const { return id != o.id; } bool operator<(mark_t o) const { return id < o.id; } bool operator<=(mark_t o) const { return id <= o.id; } bool operator>(mark_t o) const { return id > o.id; } bool operator>=(mark_t o) const { return id >= o.id; } operator bool() const { return id != 0; } bool has(unsigned u) const { return id & (1U << u); } void set(unsigned u) { id |= (1U << u); } void clear(unsigned u) { id &= ~(1U << u); } mark_t& operator&=(mark_t r) { id &= r.id; return *this; } mark_t& operator|=(mark_t r) { id |= r.id; return *this; } mark_t& operator-=(mark_t r) { id &= ~r.id; return *this; } mark_t& operator^=(mark_t r) { id ^= r.id; return *this; } mark_t operator&(mark_t r) const { return id & r.id; } mark_t operator|(mark_t r) const { return id | r.id; } mark_t operator-(mark_t r) const { return id & ~r.id; } mark_t operator^(mark_t r) const { return id ^ r.id; } mark_t strip(mark_t y) const { // strip every bit of id that is marked in y // 100101110100.strip( // 001011001000) // == 10 1 11 100 // == 10111100 auto xv = id; // 100101110100 auto yv = y.id; // 001011001000 while (yv && xv) { // Mask for everything after the last 1 in y auto rm = (~yv) & (yv - 1); // 000000000111 // Mask for everything before the last 1 in y auto lm = ~(yv ^ (yv - 1)); // 111111110000 xv = ((xv & lm) >> 1) | (xv & rm); yv = (yv & lm) >> 1; } return xv; } // Number of bits sets. unsigned count() const { #ifdef __GNUC__ return __builtin_popcount(id); #else unsigned c = 0U; auto v = id; while (v) { ++c; v &= v - 1; } return c; #endif } // Return the number of the highest set used plus one. // So if no set is used, this returns 0, // but if the sets {1,3,8} are used, this returns 9. unsigned max_set() const { auto i = id; int res = 0; while (i) { ++res; i >>= 1; } return res; } // Remove n bits that where set mark_t& remove_some(unsigned n) { while (n--) id &= id - 1; return *this; } template void fill(iterator here) const { auto a = id; unsigned level = 0; while (a) { if (a & 1) *here++ = level; ++level; a >>= 1; } } // FIXME: Return some iterable object without building a vector. std::vector sets() const { std::vector res; fill(std::back_inserter(res)); return res; } SPOT_API friend std::ostream& operator<<(std::ostream& os, mark_t m); }; // This encodes either an operator or set of acceptance sets. enum class acc_op : unsigned char { Inf, Fin, InfNeg, FinNeg, And, Or }; union acc_word { mark_t mark; struct { acc_op op; // Operator unsigned char size; // Size of the subtree (number of acc_word), // not counting this node. }; }; struct SPOT_API acc_code: public std::vector { bool operator==(const acc_code& other) const { unsigned pos = size(); if (other.size() != pos) return false; while (pos > 0) { auto op = (*this)[pos - 1].op; auto sz = (*this)[pos - 1].size; if (other[pos - 1].op != op || other[pos - 1].size != sz) return false; switch (op) { case acc_cond::acc_op::And: case acc_cond::acc_op::Or: --pos; break; case acc_cond::acc_op::Inf: case acc_cond::acc_op::InfNeg: case acc_cond::acc_op::Fin: case acc_cond::acc_op::FinNeg: pos -= 2; if (other[pos].mark != (*this)[pos].mark) return false; break; } } return true; }; bool operator<(const acc_code& other) const { unsigned pos = size(); auto osize = other.size(); if (pos < osize) return true; if (pos > osize) return false; while (pos > 0) { auto op = (*this)[pos - 1].op; auto oop = other[pos - 1].op; if (op < oop) return true; if (op > oop) return false; auto sz = (*this)[pos - 1].size; auto osz = other[pos - 1].size; if (sz < osz) return true; if (sz > osz) return false; switch (op) { case acc_cond::acc_op::And: case acc_cond::acc_op::Or: --pos; break; case acc_cond::acc_op::Inf: case acc_cond::acc_op::InfNeg: case acc_cond::acc_op::Fin: case acc_cond::acc_op::FinNeg: pos -= 2; auto m = (*this)[pos].mark; auto om = other[pos].mark; if (m < om) return true; if (m > om) return false; break; } } return false; } bool operator>(const acc_code& other) const { return other < *this; } bool operator<=(const acc_code& other) const { return !(other < *this); } bool operator>=(const acc_code& other) const { return !(*this < other); } bool operator!=(const acc_code& other) const { return !(*this == other); } bool is_true() const { unsigned s = size(); return s == 0 || ((*this)[s - 1].op == acc_op::Inf && (*this)[s - 2].mark == 0U); } bool is_false() const { unsigned s = size(); return s > 1 && (*this)[s - 1].op == acc_op::Fin && (*this)[s - 2].mark == 0U; } static acc_code f() { acc_code res; res.resize(2); res[0].mark = 0U; res[1].op = acc_op::Fin; res[1].size = 1; return res; } static acc_code t() { return {}; } static acc_code fin(mark_t m) { acc_code res; res.resize(2); res[0].mark = m; res[1].op = acc_op::Fin; res[1].size = 1; return res; } static acc_code fin(std::initializer_list vals) { return fin(mark_t(vals)); } static acc_code fin_neg(mark_t m) { acc_code res; res.resize(2); res[0].mark = m; res[1].op = acc_op::FinNeg; res[1].size = 1; return res; } static acc_code fin_neg(std::initializer_list vals) { return fin_neg(mark_t(vals)); } static acc_code inf(mark_t m) { acc_code res; res.resize(2); res[0].mark = m; res[1].op = acc_op::Inf; res[1].size = 1; return res; } static acc_code inf(std::initializer_list vals) { return inf(mark_t(vals)); } static acc_code inf_neg(mark_t m) { acc_code res; res.resize(2); res[0].mark = m; res[1].op = acc_op::InfNeg; res[1].size = 1; return res; } static acc_code inf_neg(std::initializer_list vals) { return inf_neg(mark_t(vals)); } void append_and(acc_code&& r) { if (is_true() || r.is_false()) { *this = std::move(r); return; } if (is_false() || r.is_true()) return; unsigned s = size() - 1; unsigned rs = r.size() - 1; // We want to group all Inf(x) operators: // Inf(a) & Inf(b) = Inf(a & b) if (((*this)[s].op == acc_op::Inf && r[rs].op == acc_op::Inf) || ((*this)[s].op == acc_op::InfNeg && r[rs].op == acc_op::InfNeg)) { (*this)[s - 1].mark |= r[rs - 1].mark; return; } // In the more complex scenarios, left and right may both // be conjunctions, and Inf(x) might be a member of each // side. Find it if it exists. // left_inf points to the left Inf mark if any. // right_inf points to the right Inf mark if any. acc_word* left_inf = nullptr; if ((*this)[s].op == acc_op::And) { auto start = &(*this)[s] - (*this)[s].size; auto pos = &(*this)[s] - 1; pop_back(); while (pos > start) { if (pos->op == acc_op::Inf) { left_inf = pos - 1; break; } pos -= pos->size + 1; } } else if ((*this)[s].op == acc_op::Inf) { left_inf = &(*this)[s - 1]; } acc_word* right_inf = nullptr; auto right_end = &r.back(); if (right_end->op == acc_op::And) { auto start = &r[0]; auto pos = --right_end; while (pos > start) { if (pos->op == acc_op::Inf) { right_inf = pos - 1; break; } pos -= pos->size + 1; } } else if (right_end->op == acc_op::Inf) { right_inf = right_end - 1; } if (left_inf && right_inf) { left_inf->mark |= right_inf->mark; insert(this->end(), &r[0], right_inf); insert(this->end(), right_inf + 2, right_end + 1); } else if (right_inf) { // Always insert Inf() at the very first entry. insert(this->begin(), right_inf, right_inf + 2); insert(this->end(), &r[0], right_inf); insert(this->end(), right_inf + 2, right_end + 1); } else { insert(this->end(), &r[0], right_end + 1); } acc_word w; w.op = acc_op::And; w.size = size(); push_back(w); } void append_and(const acc_code& r) { if (is_true() || r.is_false()) { *this = r; return; } if (is_false() || r.is_true()) return; unsigned s = size() - 1; unsigned rs = r.size() - 1; // Inf(a) & Inf(b) = Inf(a & b) if (((*this)[s].op == acc_op::Inf && r[rs].op == acc_op::Inf) || ((*this)[s].op == acc_op::InfNeg && r[rs].op == acc_op::InfNeg)) { (*this)[s - 1].mark |= r[rs - 1].mark; return; } // In the more complex scenarios, left and right may both // be conjunctions, and Inf(x) might be a member of each // side. Find it if it exists. // left_inf points to the left Inf mark if any. // right_inf points to the right Inf mark if any. acc_word* left_inf = nullptr; if ((*this)[s].op == acc_op::And) { auto start = &(*this)[s] - (*this)[s].size; auto pos = &(*this)[s] - 1; pop_back(); while (pos > start) { if (pos->op == acc_op::Inf) { left_inf = pos - 1; break; } pos -= pos->size + 1; } } else if ((*this)[s].op == acc_op::Inf) { left_inf = &(*this)[s - 1]; } const acc_word* right_inf = nullptr; auto right_end = &r.back(); if (right_end->op == acc_op::And) { auto start = &r[0]; auto pos = --right_end; while (pos > start) { if (pos->op == acc_op::Inf) { right_inf = pos - 1; break; } pos -= pos->size + 1; } } else if (right_end->op == acc_op::Inf) { right_inf = right_end - 1; } if (left_inf && right_inf) { left_inf->mark |= right_inf->mark; insert(this->end(), &r[0], right_inf); insert(this->end(), right_inf + 2, right_end + 1); } else if (right_inf) { // Always insert Inf() at the very first entry. insert(this->begin(), right_inf, right_inf + 2); insert(this->end(), &r[0], right_inf); insert(this->end(), right_inf + 2, right_end + 1); } else { insert(this->end(), &r[0], right_end + 1); } acc_word w; w.op = acc_op::And; w.size = size(); push_back(w); } void append_or(acc_code&& r) { if (is_true() || r.is_false()) return; if (is_false() || r.is_true()) { *this = std::move(r); return; } unsigned s = size() - 1; unsigned rs = r.size() - 1; // Fin(a) | Fin(b) = Fin(a | b) if (((*this)[s].op == acc_op::Fin && r[rs].op == acc_op::Fin) || ((*this)[s].op == acc_op::FinNeg && r[rs].op == acc_op::FinNeg)) { (*this)[s - 1].mark |= r[rs - 1].mark; return; } if ((*this)[s].op == acc_op::Or) pop_back(); if (r.back().op == acc_op::Or) r.pop_back(); insert(this->end(), r.begin(), r.end()); acc_word w; w.op = acc_op::Or; w.size = size(); push_back(w); } void shift_left(unsigned sets) { if (empty()) return; unsigned pos = size(); do { switch ((*this)[pos - 1].op) { case acc_cond::acc_op::And: case acc_cond::acc_op::Or: --pos; break; case acc_cond::acc_op::Inf: case acc_cond::acc_op::InfNeg: case acc_cond::acc_op::Fin: case acc_cond::acc_op::FinNeg: pos -= 2; (*this)[pos].mark.id <<= sets; break; } } while (pos > 0); } bool is_dnf() const; bool is_cnf() const; acc_code to_dnf() const; acc_code to_cnf() const; acc_code complement() const; // Return a list of acceptance marks needed to close a cycle // that already visit INF infinitely often, so that the cycle is // accepting (ACCEPTING=true) or rejecting (ACCEPTING=false). // Positive values describe positive set. // A negative value x means the set -x-1 must be absent. std::vector> missing(mark_t inf, bool accepting) const; bool accepting(mark_t inf) const; bool inf_satisfiable(mark_t inf) const; // Remove all the acceptance sets in rem. // // If MISSING is set, the acceptance sets are assumed to be // missing from the automaton, and the acceptance is updated to // reflect this. For instance (Inf(1)&Inf(2))|Fin(3) will // become Fin(3) if we remove 2 because it is missing from this // automaton, because there is no way to fulfill Inf(1)&Inf(2) // in this case. So essentially MISSING causes Inf(rem) to // become f, and Fin(rem) to become t. // // If MISSING is unset, Inf(rem) become t while Fin(rem) become // f. Removing 2 from (Inf(1)&Inf(2))|Fin(3) would then give // Inf(1)|Fin(3). acc_code strip(acc_cond::mark_t rem, bool missing) const; // Return the set of sets appearing in the condition. acc_cond::mark_t used_sets() const; // Return (true, m) if there exist some m that does not satisfy // the acceptance condition. Return (false, 0U) otherwise. std::pair unsat_mark() const; // Return the sets used as Inf or Fin in the acceptance condition std::pair used_inf_fin_sets() const; // Print the acceptance as HTML. The set_printer function can // be used to implement customized output for set numbers. std::ostream& to_html(std::ostream& os, std::function set_printer = nullptr) const; // Print the acceptance as text. The set_printer function can // be used to implement customized output for set numbers. std::ostream& to_text(std::ostream& os, std::function set_printer = nullptr) const; // Calls to_text SPOT_API friend std::ostream& operator<<(std::ostream& os, const acc_code& code); }; acc_cond(unsigned n_sets = 0) : num_(0U), all_(0U) { add_sets(n_sets); } acc_cond(const acc_cond& o) : num_(o.num_), all_(o.all_), code_(o.code_) { } ~acc_cond() { } void set_acceptance(const acc_code& code) { code_ = code; uses_fin_acceptance_ = check_fin_acceptance(); } const acc_code& get_acceptance() const { return code_; } acc_code& get_acceptance() { return code_; } bool uses_fin_acceptance() const { return uses_fin_acceptance_; } void set_generalized_buchi() { set_acceptance(inf(all_sets())); } bool is_generalized_buchi() const { unsigned s = code_.size(); return (s == 0 && num_ == 0) || (s == 2 && code_[1].op == acc_op::Inf && code_[0].mark == all_sets()); } static acc_code generalized_buchi(unsigned n) { mark_t m((1U << n) - 1); if (n == 8 * sizeof(mark_t::value_t)) m = mark_t(-1U); return acc_code::inf(m); } bool is_buchi() const { unsigned s = code_.size(); return num_ == 1 && s == 2 && code_[1].op == acc_op::Inf && code_[0].mark == all_sets(); } bool is_true() const { return code_.is_true(); } protected: bool check_fin_acceptance() const; public: acc_code inf(mark_t mark) const { return acc_code::inf(mark); } acc_code inf(std::initializer_list vals) const { return inf(marks(vals.begin(), vals.end())); } acc_code inf_neg(mark_t mark) const { return acc_code::inf_neg(mark); } acc_code inf_neg(std::initializer_list vals) const { return inf_neg(marks(vals.begin(), vals.end())); } acc_code fin(mark_t mark) const { return acc_code::fin(mark); } acc_code fin(std::initializer_list vals) const { return fin(marks(vals.begin(), vals.end())); } acc_code fin_neg(mark_t mark) const { return acc_code::fin_neg(mark); } acc_code fin_neg(std::initializer_list vals) const { return fin_neg(marks(vals.begin(), vals.end())); } unsigned add_sets(unsigned num) { if (num == 0) return -1U; unsigned j = num_; num_ += num; if (num_ > 8 * sizeof(mark_t::id)) throw std::runtime_error("Too many acceptance sets used."); all_ = all_sets_(); return j; } unsigned add_set() { return add_sets(1); } mark_t mark(unsigned u) const { return mark_(u); } template mark_t marks(const iterator& begin, const iterator& end) const { return mark_t(begin, end); } mark_t marks(std::initializer_list vals) const { return marks(vals.begin(), vals.end()); } // FIXME: Return some iterable object without building a vector. std::vector sets(mark_t m) const { return m.sets(); } // whether m contains u bool has(mark_t m, unsigned u) const { return m.has(u); } mark_t cup(mark_t l, mark_t r) const { return l | r; } mark_t cap(mark_t l, mark_t r) const { return l & r; } mark_t set_minus(mark_t l, mark_t r) const { return l - r; } mark_t join(const acc_cond& la, mark_t lm, const acc_cond& ra, mark_t rm) const { assert(la.num_sets() + ra.num_sets() == num_sets()); (void)ra; return lm.id | (rm.id << la.num_sets()); } mark_t comp(mark_t l) const { return all_ ^ l.id; } mark_t all_sets() const { return all_; } bool accepting(mark_t inf) const { return code_.accepting(inf); } bool inf_satisfiable(mark_t inf) const { return code_.inf_satisfiable(inf); } mark_t accepting_sets(mark_t inf) const; std::ostream& format(std::ostream& os, mark_t m) const { auto a = m; if (a == 0U) return os; return os << m; } std::string format(mark_t m) const { std::ostringstream os; format(os, m); return os.str(); } unsigned num_sets() const { return num_; } template mark_t useless(iterator begin, iterator end) const { mark_t::value_t u = 0U; // The set of useless marks. for (unsigned x = 0; x < num_; ++x) { // Skip marks that are already known to be useless. if (u & (1 << x)) continue; unsigned all = all_ ^ (u | (1 << x)); for (iterator y = begin; y != end; ++y) { auto v = y->id; if (v & (1 << x)) { all &= v; if (!all) break; } } u |= all; } return u; } protected: mark_t::value_t mark_(unsigned u) const { assert(u < num_sets()); return 1U << u; } mark_t::value_t all_sets_() const { if (num_ == 0) return 0; return -1U >> (8 * sizeof(mark_t::value_t) - num_); } unsigned num_; mark_t::value_t all_; acc_code code_; bool uses_fin_acceptance_ = false; }; /// \brief Parse a string into an acc_code /// /// The string should follow the following grammar: /// ///
  ///   acc ::= "t"
  ///         | "f"
  ///         | "Inf" "(" num ")"
  ///         | "Fin" "(" num ")"
  ///         | "(" acc ")"
  ///         | acc "&" acc
  ///         | acc "|" acc
  /// 
/// /// Where num is an integer and "&" has priority over "|". Note that /// "Fin(!x)" and "Inf(!x)" are not supported by this parser. /// /// A spot::parse_error is thrown on syntax error. SPOT_API acc_cond::acc_code parse_acc_code(const char* input); } namespace std { template<> struct hash { size_t operator()(spot::acc_cond::mark_t m) const { std::hash h; return h(m.id); } }; }