// -*- coding: utf-8 -*- // Copyright (C) 2012, 2013, 2015 Laboratoire de Recherche et Développement // de l'Epita (LRDE). // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // Families defined here come from the following papers: // // @InProceedings{cichon.09.depcos, // author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski}, // title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas}, // booktitle = {Proceedings of the Fourth International Conference on // Dependability of Computer Systems}, // pages = {17--24}, // year = 2009, // publisher = {IEEE Computer Society}, // } // // @InProceedings{geldenhuys.06.spin, // author = {Jaco Geldenhuys and Henri Hansen}, // title = {Larger Automata and Less Work for LTL Model Checking}, // booktitle = {Proceedings of the 13th International SPIN Workshop}, // year = {2006}, // pages = {53--70}, // series = {Lecture Notes in Computer Science}, // volume = {3925}, // publisher = {Springer} // } // // @InProceedings{gastin.01.cav, // author = {Paul Gastin and Denis Oddoux}, // title = {Fast {LTL} to {B\"u}chi Automata Translation}, // booktitle = {Proceedings of the 13th International Conference on // Computer Aided Verification (CAV'01)}, // pages = {53--65}, // year = 2001, // editor = {G. Berry and H. Comon and A. Finkel}, // volume = {2102}, // series = {Lecture Notes in Computer Science}, // address = {Paris, France}, // publisher = {Springer-Verlag} // } // // @InProceedings{rozier.07.spin, // author = {Kristin Y. Rozier and Moshe Y. Vardi}, // title = {LTL Satisfiability Checking}, // booktitle = {Proceedings of the 12th International SPIN Workshop on // Model Checking of Software (SPIN'07)}, // pages = {149--167}, // year = {2007}, // volume = {4595}, // series = {Lecture Notes in Computer Science}, // publisher = {Springer-Verlag} // } #include "common_sys.hh" #include #include #include #include #include "error.h" #include #include "common_setup.hh" #include "common_output.hh" #include "common_range.hh" #include #include #include #include #include #include #include #include #include using namespace spot; const char argp_program_doc[] ="\ Generate temporal logic formulas from predefined scalable patterns."; enum { OPT_AND_F = 1, OPT_AND_FG, OPT_AND_GF, OPT_CCJ_ALPHA, OPT_CCJ_BETA, OPT_CCJ_BETA_PRIME, OPT_GH_Q, OPT_GH_R, OPT_GO_THETA, OPT_OR_FG, OPT_OR_G, OPT_OR_GF, OPT_R_LEFT, OPT_R_RIGHT, OPT_RV_COUNTER, OPT_RV_COUNTER_CARRY, OPT_RV_COUNTER_CARRY_LINEAR, OPT_RV_COUNTER_LINEAR, OPT_U_LEFT, OPT_U_RIGHT, LAST_CLASS, }; const char* const class_name[LAST_CLASS] = { "and-f", "and-fg", "and-gf", "ccj-alpha", "ccj-beta", "ccj-beta-prime", "gh-q", "gh-r", "go-theta", "or-fg", "or-g", "or-gf", "or-r-left", "or-r-right", "rv-counter", "rv-counter-carry", "rv-counter-carry-linear", "rv-counter-linear", "u-left", "u-right", }; #define OPT_ALIAS(o) { #o, 0, nullptr, OPTION_ALIAS, nullptr, 0 } static const argp_option options[] = { /**************************************************/ // Keep this alphabetically sorted (expect for aliases). { nullptr, 0, nullptr, 0, "Pattern selection:", 1}, // J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less // work for LTL model checking. { "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 }, OPT_ALIAS(gh-e), { "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 }, { "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 }, OPT_ALIAS(ccj-phi), OPT_ALIAS(gh-c2), { "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0, "F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 }, { "ccj-beta", OPT_CCJ_BETA, "RANGE", 0, "F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 }, { "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0, "F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 }, { "gh-q", OPT_GH_Q, "RANGE", 0, "(F(p1)|G(p2))&(F(p2)|G(p3))&... &(F(pn)|G(p{n+1}))", 0 }, { "gh-r", OPT_GH_R, "RANGE", 0, "(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0}, { "go-theta", OPT_GO_THETA, "RANGE", 0, "!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 }, { "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 }, OPT_ALIAS(ccj-xi), { "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 }, OPT_ALIAS(gh-s), { "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 }, OPT_ALIAS(gh-c1), { "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 }, { "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 }, { "rv-counter", OPT_RV_COUNTER, "RANGE", 0, "n-bit counter", 0 }, { "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0, "n-bit counter w/ carry", 0 }, { "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0, "n-bit counter w/ carry (linear size)", 0 }, { "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0, "n-bit counter (linear size)", 0 }, { "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 }, OPT_ALIAS(gh-u), { "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 }, OPT_ALIAS(gh-u2), OPT_ALIAS(go-phi), RANGE_DOC, /**************************************************/ { nullptr, 0, nullptr, 0, "Output options:", -20 }, { nullptr, 0, nullptr, 0, "The FORMAT string passed to --format may use " "the following interpreted sequences:", -19 }, { "%f", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE, "the formula (in the selected syntax)", 0 }, { "%F", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE, "the name of the pattern", 0 }, { "%L", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE, "the argument of the pattern", 0 }, { "%%", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE, "a single %", 0 }, { nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 }, { nullptr, 0, nullptr, 0, nullptr, 0 } }; struct job { int pattern; struct range range; }; typedef std::vector jobs_t; static jobs_t jobs; const struct argp_child children[] = { { &output_argp, 0, nullptr, -20 }, { &misc_argp, 0, nullptr, -1 }, { nullptr, 0, nullptr, 0 } }; static void enqueue_job(int pattern, const char* range_str) { job j; j.pattern = pattern; j.range = parse_range(range_str); jobs.push_back(j); } static int parse_opt(int key, char* arg, struct argp_state*) { // This switch is alphabetically-ordered. switch (key) { case OPT_AND_F: case OPT_AND_FG: case OPT_AND_GF: case OPT_CCJ_ALPHA: case OPT_CCJ_BETA: case OPT_CCJ_BETA_PRIME: case OPT_GH_Q: case OPT_GH_R: case OPT_GO_THETA: case OPT_OR_FG: case OPT_OR_G: case OPT_OR_GF: case OPT_R_LEFT: case OPT_R_RIGHT: case OPT_RV_COUNTER: case OPT_RV_COUNTER_CARRY: case OPT_RV_COUNTER_CARRY_LINEAR: case OPT_RV_COUNTER_LINEAR: case OPT_U_LEFT: case OPT_U_RIGHT: enqueue_job(key, arg); break; default: return ARGP_ERR_UNKNOWN; } return 0; } #define G_(x) formula::G(x) #define F_(x) formula::F(x) #define X_(x) formula::X(x) #define Not_(x) formula::Not(x) #define Implies_(x, y) formula::Implies((x), (y)) #define Equiv_(x, y) formula::Equiv((x), (y)) #define And_(x, y) formula::And({(x), (y)}) #define Or_(x, y) formula::Or({(x), (y)}) #define U_(x, y) formula::U((x), (y)) // F(p_1 & F(p_2 & F(p_3 & ... F(p_n)))) static formula E_n(std::string name, int n) { if (n <= 0) return formula::tt(); formula result = nullptr; for (; n > 0; --n) { std::ostringstream p; p << name << n; formula f = formula::ap(p.str()); if (result) result = And_(f, result); else result = f; result = F_(result); } return result; } // p & X(p & X(p & ... X(p))) static formula phi_n(std::string name, int n) { if (n <= 0) return formula::tt(); formula result = nullptr; formula p = formula::ap(name); for (; n > 0; --n) { if (result) result = And_(p, X_(result)); else result = p; } return result; } static formula N_n(std::string name, int n) { return formula::F(phi_n(name, n)); } // p & X(p) & XX(p) & XXX(p) & ... X^n(p) static formula phi_prime_n(std::string name, int n) { if (n <= 0) return formula::tt(); formula result = nullptr; formula p = formula::ap(name); for (; n > 0; --n) { if (result) { p = X_(p); result = And_(result, p); } else { result = p; } } return result; } static formula N_prime_n(std::string name, int n) { return F_(phi_prime_n(name, n)); } // GF(p_1) & GF(p_2) & ... & GF(p_n) if conj == true // GF(p_1) | GF(p_2) | ... | GF(p_n) if conj == false static formula GF_n(std::string name, int n, bool conj = true) { if (n <= 0) return conj ? formula::tt() : formula::ff(); formula result = nullptr; op o = conj ? op::And : op::Or; for (int i = 1; i <= n; ++i) { std::ostringstream p; p << name << i; formula f = G_(F_(formula::ap(p.str()))); if (result) result = formula::multop(o, {f, result}); else result = f; } return result; } // FG(p_1) | FG(p_2) | ... | FG(p_n) if conj == false // FG(p_1) & FG(p_2) & ... & FG(p_n) if conj == true static formula FG_n(std::string name, int n, bool conj = false) { if (n <= 0) return conj ? formula::tt() : formula::ff(); formula result = nullptr; op o = conj ? op::And : op::Or; for (int i = 1; i <= n; ++i) { std::ostringstream p; p << name << i; formula f = F_(G_(formula::ap(p.str()))); if (result) result = formula::multop(o, {f, result}); else result = f; } return result; } // (((p1 OP p2) OP p3)...OP pn) if right_assoc == false // (p1 OP (p2 OP (p3 OP (... pn) if right_assoc == true static formula bin_n(std::string name, int n, op o, bool right_assoc = false) { if (n <= 0) n = 1; formula result = nullptr; for (int i = 1; i <= n; ++i) { std::ostringstream p; p << name << (right_assoc ? (n + 1 - i) : i); formula f = formula::ap(p.str()); if (!result) result = f; else if (right_assoc) result = formula::binop(o, f, result); else result = formula::binop(o, result, f); } return result; } // (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))" static formula R_n(std::string name, int n) { if (n <= 0) return formula::tt(); formula pi; { std::ostringstream p; p << name << 1; pi = formula::ap(p.str()); } formula result = nullptr; for (int i = 1; i <= n; ++i) { formula gf = G_(F_(pi)); std::ostringstream p; p << name << i + 1; pi = formula::ap(p.str()); formula fg = F_(G_(pi)); formula f = Or_(gf, fg); if (result) result = And_(f, result); else result = f; } return result; } // (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))" static formula Q_n(std::string name, int n) { if (n <= 0) return formula::tt(); formula pi; { std::ostringstream p; p << name << 1; pi = formula::ap(p.str()); } formula result = nullptr; for (int i = 1; i <= n; ++i) { formula f = F_(pi); std::ostringstream p; p << name << i + 1; pi = formula::ap(p.str()); formula g = G_(pi); f = Or_(f, g); if (result) result = And_(f, result); else result = f; } return result; } // OP(p1) | OP(p2) | ... | OP(Pn) if conj == false // OP(p1) & OP(p2) & ... & OP(Pn) if conj == true static formula combunop_n(std::string name, int n, op o, bool conj = false) { if (n <= 0) return conj ? formula::tt() : formula::ff(); formula result = nullptr; op cop = conj ? op::And : op::Or; for (int i = 1; i <= n; ++i) { std::ostringstream p; p << name << i; formula f = formula::unop(o, formula::ap(p.str())); if (result) result = formula::multop(cop, {f, result}); else result = f; } return result; } // !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r))) // From "Fast LTL to Büchi Automata Translation" [gastin.01.cav] static formula fair_response(std::string p, std::string q, std::string r, int n) { formula fair = GF_n(p, n); formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r)))); return Not_(Implies_(fair, resp)); } // Builds X(X(...X(p))) with n occurrences of X. static formula X_n(formula p, int n) { assert(n >= 0); formula res = p; while (n--) res = X_(res); return res; } // Based on LTLcounter.pl from Kristin Rozier. // http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/ static formula ltl_counter(std::string bit, std::string marker, int n, bool linear) { formula b = formula::ap(bit); formula neg_b = Not_(b); formula m = formula::ap(marker); formula neg_m = Not_(m); std::vector res(4); // The marker starts with "1", followed by n-1 "0", then "1" again, // n-1 "0", etc. if (!linear) { // G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3] std::vector v(n); for (int i = 0; i + 1 < n; ++i) v[i] = X_n(neg_m, i + 1); v[n - 1] = X_n(m, n); res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v))))); } else { // G(m -> X(!m & X(!m X(m)))) [if n = 3] formula p = m; for (int i = n - 1; i > 0; --i) p = And_(neg_m, X_(p)); res[0] = And_(m, G_(Implies_(m, X_(p)))); } // All bits are initially zero. if (!linear) { // !b & X(!b) & XX(!b) [if n = 3] std::vector v2(n); for (int i = 0; i < n; ++i) v2[i] = X_n(neg_b, i); res[1] = formula::And(std::move(v2)); } else { // !b & X(!b & X(!b)) [if n = 3] formula p = neg_b; for (int i = n - 1; i > 0; --i) p = And_(neg_b, X_(p)); res[1] = p; } #define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y))) // If the least significant bit is 0, it will be 1 at the next time, // and other bits stay the same. formula Xnm1_b = X_n(b, n - 1); formula Xn_b = X_(Xnm1_b); res[2] = G_(Implies_(And_(m, neg_b), AndX_(Xnm1_b, U_(And_(Not_(m), Equiv_(b, Xn_b)), m)))); // From the least significant bit to the first 0, all the bits // are flipped on the next value. Remaining bits are identical. formula Xnm1_negb = X_n(neg_b, n - 1); formula Xn_negb = X_(Xnm1_negb); res[3] = G_(Implies_(And_(m, b), AndX_(Xnm1_negb, U_(And_(And_(b, neg_m), Xn_negb), Or_(m, And_(And_(neg_m, neg_b), AndX_(Xnm1_b, U_(And_(neg_m, Equiv_(b, Xn_b)), m)))))))); return formula::And(std::move(res)); } static formula ltl_counter_carry(std::string bit, std::string marker, std::string carry, int n, bool linear) { formula b = formula::ap(bit); formula neg_b = Not_(b); formula m = formula::ap(marker); formula neg_m = Not_(m); formula c = formula::ap(carry); formula neg_c = Not_(c); std::vector res(6); // The marker starts with "1", followed by n-1 "0", then "1" again, // n-1 "0", etc. if (!linear) { // G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3] std::vector v(n); for (int i = 0; i + 1 < n; ++i) v[i] = X_n(neg_m, i + 1); v[n - 1] = X_n(m, n); res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v))))); } else { // G(m -> X(!m & X(!m X(m)))) [if n = 3] formula p = m; for (int i = n - 1; i > 0; --i) p = And_(neg_m, X_(p)); res[0] = And_(m, G_(Implies_(m, X_(p)))); } // All bits are initially zero. if (!linear) { // !b & X(!b) & XX(!b) [if n = 3] std::vector v2(n); for (int i = 0; i < n; ++i) v2[i] = X_n(neg_b, i); res[1] = formula::And(std::move(v2)); } else { // !b & X(!b & X(!b)) [if n = 3] formula p = neg_b; for (int i = n - 1; i > 0; --i) p = And_(neg_b, X_(p)); res[1] = p; } formula Xn_b = X_n(b, n); formula Xn_negb = X_n(neg_b, n); // If m is 1 and b is 0 then c is 0 and n steps later b is 1. res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b))); // If m is 1 and b is 1 then c is 1 and n steps later b is 0. res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb))); if (!linear) { // If there's no carry, then all of the bits stay the same n steps later. res[4] = G_(Implies_(And_(neg_c, X_(neg_m)), And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b))))); // If there's a carry, then add one: flip the bits of b and // adjust the carry. res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b), And_(X_(neg_c), X_(Xn_b))), Implies_(X_(b), And_(X_(c), X_(Xn_negb)))))); } else { // If there's no carry, then all of the bits stay the same n steps later. res[4] = G_(Implies_(And_(neg_c, X_(neg_m)), X_(And_(Not_(c), Equiv_(b, Xn_b))))); // If there's a carry, then add one: flip the bits of b and // adjust the carry. res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)), Implies_(b, And_(c, Xn_negb)))))); } return formula::And(std::move(res)); } static void output_pattern(int pattern, int n) { formula f = nullptr; switch (pattern) { // Keep this alphabetically-ordered! case OPT_AND_F: f = combunop_n("p", n, op::F, true); break; case OPT_AND_FG: f = FG_n("p", n, true); break; case OPT_AND_GF: f = GF_n("p", n, true); break; case OPT_CCJ_ALPHA: f = formula::And({E_n("p", n), E_n("q", n)}); break; case OPT_CCJ_BETA: f = formula::And({N_n("p", n), N_n("q", n)}); break; case OPT_CCJ_BETA_PRIME: f = formula::And({N_prime_n("p", n), N_prime_n("q", n)}); break; case OPT_GH_Q: f = Q_n("p", n); break; case OPT_GH_R: f = R_n("p", n); break; case OPT_GO_THETA: f = fair_response("p", "q", "r", n); break; case OPT_OR_FG: f = FG_n("p", n, false); break; case OPT_OR_G: f = combunop_n("p", n, op::G, false); break; case OPT_OR_GF: f = GF_n("p", n, false); break; case OPT_R_LEFT: f = bin_n("p", n, op::R, false); break; case OPT_R_RIGHT: f = bin_n("p", n, op::R, true); break; case OPT_RV_COUNTER_CARRY: f = ltl_counter_carry("b", "m", "c", n, false); break; case OPT_RV_COUNTER_CARRY_LINEAR: f = ltl_counter_carry("b", "m", "c", n, true); break; case OPT_RV_COUNTER: f = ltl_counter("b", "m", n, false); break; case OPT_RV_COUNTER_LINEAR: f = ltl_counter("b", "m", n, true); break; case OPT_U_LEFT: f = bin_n("p", n, op::U, false); break; case OPT_U_RIGHT: f = bin_n("p", n, op::U, true); break; default: error(100, 0, "internal error: pattern not implemented"); } // Make sure we use only "p42"-style of atomic propositions // in lbt's output. if (output_format == lbt_output && !f.has_lbt_atomic_props()) f = relabel(f, Pnn); output_formula_checked(f, class_name[pattern - 1], n); } static void run_jobs() { for (auto& j: jobs) { int inc = (j.range.max < j.range.min) ? -1 : 1; int n = j.range.min; for (;;) { output_pattern(j.pattern, n); if (n == j.range.max) break; n += inc; } } } int main(int argc, char** argv) { setup(argv); const argp ap = { options, parse_opt, nullptr, argp_program_doc, children, nullptr, nullptr }; if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr)) exit(err); if (jobs.empty()) error(1, 0, "Nothing to do. Try '%s --help' for more information.", program_name); run_jobs(); return 0; }