// -*- coding: utf-8 -*-
// Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015
// Laboratoire de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
// d'Informatique de Paris 6 (LIP6), département Systèmes Répartis
// Coopératifs (SRC), Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include "twaalgos/dot.hh"
namespace spot
{
namespace
{
typedef std::vector vec;
// This should only be called on And formulae and return
// the set of subformula that are implied by the formulas
// already in the And.
// If f = Ga & (b R c) & G(d & (e R (g R h)) & Xj) & Xk this
// returns the set {a, # implied by Ga
// c, # implied by b R c
// d, e R (g R h), g R h, h, Xj # implied by G(d & ...)
// }
// Leave recurring to false on first call.
typedef std::set formula_set;
void
implied_subformulae(formula f, formula_set& rec, bool recurring = false)
{
if (!f.is(op::And))
{
// Only recursive calls should be made with an operator that
// is not And.
assert(recurring);
rec.insert(f);
return;
}
unsigned s = f.size();
for (unsigned n = 0; n < s; ++n)
{
formula sub = f[n];
// Recurring is set if we are under "G(...)" or "0 R (...)"
// or (...) W 0".
if (recurring)
rec.insert(sub);
if (sub.is(op::G))
{
implied_subformulae(sub[0], rec, true);
}
else if (sub.is(op::W))
{
// f W 0 = Gf
if (sub[1].is_ff())
implied_subformulae(sub[0], rec, true);
}
else
while (sub.is(op::R, op::M))
{
// in 'f R g' and 'f M g' always evaluate 'g'.
formula b = sub;
sub = b[1];
if (b[0].is_ff())
{
assert(b.is(op::R)); // because 0 M g = 0
// 0 R f = Gf
implied_subformulae(sub, rec, true);
break;
}
rec.insert(sub);
}
}
}
class translate_dict;
class ratexp_to_dfa
{
typedef twa_graph::namer namer;
public:
ratexp_to_dfa(translate_dict& dict);
std::tuple
succ(formula f);
~ratexp_to_dfa();
protected:
typedef std::pair labelled_aut;
labelled_aut translate(formula f);
private:
translate_dict& dict_;
typedef std::unordered_map f2a_t;
std::vector automata_;
f2a_t f2a_;
};
// Helper dictionary. We represent formulae using BDDs to
// simplify them, and then translate BDDs back into formulae.
//
// The name of the variables are inspired from Couvreur's FM paper.
// "a" variables are promises (written "a" in the paper)
// "next" variables are X's operands (the "r_X" variables from the paper)
// "var" variables are atomic propositions.
class translate_dict
{
public:
translate_dict(twa_graph_ptr& a, tl_simplifier* ls, bool exprop,
bool single_acc, bool unambiguous)
: a_(a),
dict(a->get_dict()),
ls(ls),
a_set(bddtrue),
var_set(bddtrue),
next_set(bddtrue),
transdfa(*this),
exprop(exprop),
single_acc(single_acc),
acc(a->acc()),
unambiguous(unambiguous)
{
}
~translate_dict()
{
dict->unregister_all_my_variables(this);
}
twa_graph_ptr& a_;
bdd_dict_ptr dict;
tl_simplifier* ls;
mark_tools mt;
typedef bdd_dict::fv_map fv_map;
typedef std::vector vf_map;
fv_map next_map; ///< Maps "Next" variables to BDD variables
vf_map next_formula_map; ///< Maps BDD variables to "Next" variables
bdd a_set;
bdd var_set;
bdd next_set;
ratexp_to_dfa transdfa;
bool exprop;
bool single_acc;
acc_cond& acc;
// Map BDD variables to acceptance marks.
std::map bm;
bool unambiguous;
enum translate_flags
{
flags_none = 0,
// Keep these bits slightly apart as we will use them as-is
// in the hash function for flagged_formula.
flags_mark_all = (1<<10),
flags_recurring = (1<<14),
};
struct flagged_formula
{
formula f;
unsigned flags; // a combination of translate_flags
bool
operator==(const flagged_formula& other) const
{
return this->f == other.f && this->flags == other.flags;
}
};
struct flagged_formula_hash:
public std::unary_function
{
size_t
operator()(const flagged_formula& that) const
{
return that.f.id() ^ size_t(that.flags);
}
};
struct translated
{
bdd symbolic;
bool has_rational:1;
bool has_marked:1;
};
typedef
std::unordered_map flagged_formula_to_bdd_map;
private:
flagged_formula_to_bdd_map ltl_bdd_;
public:
int
register_proposition(formula f)
{
int num = dict->register_proposition(f, this);
var_set &= bdd_ithvar(num);
return num;
}
acc_cond::mark_t
bdd_to_mark(bdd a)
{
bdd o = a;
if (a == bddtrue)
return 0U;
assert(a != bddfalse);
std::vector t;
do
{
int v = bdd_var(a);
bdd h = bdd_high(a);
a = bdd_low(a);
if (h != bddfalse)
{
t.push_back(bm[v]);
if (a == bddfalse)
a = h;
}
}
while (a != bddtrue);
return acc.marks(t.begin(), t.end());
}
int
register_a_variable(formula f)
{
if (single_acc)
{
int num = dict->register_acceptance_variable
(formula::tt(), this);
a_set &= bdd_ithvar(num);
auto p = bm.emplace(num, 0U);
if (p.second)
p.first->second = acc.add_set();
return num;
}
// A promise of 'x', noted P(x) is pretty much like the F(x)
// LTL formula, it ensure that 'x' will be fulfilled (= not
// promised anymore) eventually.
// So a U b = ((a&Pb) W b)
// a U (b U c) = (a&P(b U c)) W (b&P(c) W c)
// the latter encoding may be simplified to
// a U (b U c) = (a&P(c)) W (b&P(c) W c)
//
// Similarly
// a M b = (a R (b&P(a)))
// (a M b) M c = (a R (b & Pa)) R (c & P(a M b))
// = (a R (b & Pa)) R (c & P(a & b))
//
// The code below therefore implement the following
// rules:
// P(a U b) = P(b)
// P(F(a)) = P(a)
// P(a M b) = P(a & b)
//
// The latter rule INCORRECTLY appears as P(a M b)=P(a)
// in section 3.5 of
// "LTL translation improvements in Spot 1.0",
// A. Duret-Lutz. IJCCBS 5(1/2):31-54, March 2014.
// and was unfortunately implemented this way until Spot
// 1.2.4. A counterexample is given by the formula
// G(Fa & ((a M b) U ((c U !d) M d)))
// that was found by Joachim Klein. Here P((c U !d) M d)
// and P(c U !d) should not both be simplified to P(!d).
for (;;)
{
if (f.is(op::U))
{
// P(a U b) = P(b)
f = f[1];
}
else if (f.is(op::M))
{
// P(a M b) = P(a & b)
formula g = formula::And({f[0], f[1]});
int num = dict->register_acceptance_variable(g, this);
a_set &= bdd_ithvar(num);
auto p = bm.emplace(num, 0U);
if (p.second)
p.first->second = acc.add_set();
return num;
}
else if (f.is(op::F))
{
// P(F(a)) = P(a)
f = f[0];
}
else
{
break;
}
}
int num = dict->register_acceptance_variable(f, this);
a_set &= bdd_ithvar(num);
auto p = bm.emplace(num, 0U);
if (p.second)
p.first->second = acc.add_set();
return num;
}
int
register_next_variable(formula f)
{
int num;
// Do not build a Next variable that already exists.
fv_map::iterator sii = next_map.find(f);
if (sii != next_map.end())
{
num = sii->second;
}
else
{
num = dict->register_anonymous_variables(1, this);
next_map[f] = num;
next_formula_map.resize(bdd_varnum());
next_formula_map[num] = f;
}
next_set &= bdd_ithvar(num);
return num;
}
std::ostream&
dump(std::ostream& os) const
{
os << "Next Variables:" << std::endl;
for (auto& fi: next_map)
{
os << " " << fi.second << ": Next[";
print_psl(os, fi.first) << ']' << std::endl;
}
os << "Shared Dict:" << std::endl;
dict->dump(os);
return os;
}
formula
var_to_formula(int var) const
{
const bdd_dict::bdd_info& i = dict->bdd_map[var];
if (i.type != bdd_dict::anon)
{
assert(i.type == bdd_dict::acc || i.type == bdd_dict::var);
return i.f;
}
formula f = next_formula_map[var];
assert(f);
return f;
}
bdd
boolean_to_bdd(formula f)
{
bdd res = ls->as_bdd(f);
var_set &= bdd_support(res);
bdd all = var_set;
while (all != bddfalse)
{
bdd one = bdd_satone(all);
all -= one;
while (one != bddtrue)
{
int v = bdd_var(one);
a_->register_ap(var_to_formula(v));
if (bdd_high(one) == bddfalse)
one = bdd_low(one);
else
one = bdd_high(one);
}
}
return res;
}
formula
conj_bdd_to_formula(bdd b, op o = op::And) const
{
if (b == bddfalse)
return formula::ff();
vec v;
while (b != bddtrue)
{
int var = bdd_var(b);
formula res = var_to_formula(var);
bdd high = bdd_high(b);
if (high == bddfalse)
{
res = formula::Not(res);
b = bdd_low(b);
}
else
{
assert(bdd_low(b) == bddfalse);
b = high;
}
assert(b != bddfalse);
v.push_back(res);
}
return formula::multop(o, std::move(v));
}
formula
conj_bdd_to_sere(bdd b) const
{
return conj_bdd_to_formula(b, op::AndRat);
}
formula
bdd_to_formula(bdd f)
{
if (f == bddfalse)
return formula::ff();
vec v;
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
v.push_back(conj_bdd_to_formula(cube));
return formula::Or(std::move(v));
}
formula
bdd_to_sere(bdd f)
{
if (f == bddfalse)
return formula::ff();
vec v;
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
v.push_back(conj_bdd_to_sere(cube));
return formula::OrRat(std::move(v));
}
const translated&
ltl_to_bdd(formula f, bool mark_all, bool recurring = false);
};
#ifdef __GNUC__
# define unused __attribute__((unused))
#else
# define unused
#endif
// Debugging function.
static unused
std::ostream&
trace_ltl_bdd(const translate_dict& d, bdd f)
{
std::cerr << "Displaying BDD ";
bdd_print_set(std::cerr, d.dict, f) << ":\n";
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, d.next_set);
bdd dest_bdd = bdd_existcomp(cube, d.next_set);
formula dest = d.conj_bdd_to_formula(dest_bdd);
bdd_print_set(std::cerr, d.dict, label) << " => ";
bdd_print_set(std::cerr, d.dict, dest_bdd) << " = ";
print_psl(std::cerr, dest) << '\n';
}
return std::cerr;
}
bdd translate_ratexp(formula f, translate_dict& dict,
formula to_concat = nullptr);
// Rewrite rule for rational operators.
class ratexp_trad_visitor final
{
public:
// negated should only be set for constants or atomic properties
ratexp_trad_visitor(translate_dict& dict, formula to_concat = nullptr)
: dict_(dict), to_concat_(to_concat)
{
}
bdd next_to_concat()
{
// Encoding X[*0] when there is nothing to concatenate is a
// way to ensure that we distinguish the rational formula "a"
// (encoded as "a&X[*0]") from the rational formula "a;[*]"
// (encoded as "a&X[*]").
//
// It's important that when we do "a && (a;[*])" we do not get
// "a;[*]" as it would occur if we had simply encoded "a" as
// "a".
if (!to_concat_)
to_concat_ = formula::eword();
int x = dict_.register_next_variable(to_concat_);
return bdd_ithvar(x);
}
bdd now_to_concat()
{
if (to_concat_ && !to_concat_.is(op::eword))
return recurse(to_concat_);
return bddfalse;
}
// Append to_concat_ to all Next variables in IN.
bdd concat_dests(bdd in)
{
if (!to_concat_)
return in;
minato_isop isop(in);
bdd cube;
bdd out = bddfalse;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest.is(op::eword))
{
out |= label & next_to_concat();
}
else
{
formula dest2 = formula::Concat({dest, to_concat_});
if (!dest2.is_ff())
out |=
label & bdd_ithvar(dict_.register_next_variable(dest2));
}
}
return out;
}
bdd visit(formula f)
{
switch (op o = f.kind())
{
case op::ff:
return bddfalse;
case op::tt:
return next_to_concat();
case op::eword:
return now_to_concat();
case op::ap:
return (bdd_ithvar(dict_.register_proposition(f))
& next_to_concat());
case op::F:
case op::G:
case op::X:
case op::Closure:
case op::NegClosure:
case op::NegClosureMarked:
SPOT_UNREACHABLE(); // Because not rational operator
case op::Not:
{
// Not can only appear in front of Boolean
// expressions.
formula g = f[0];
assert(g.is_boolean());
return (!recurse(g)) & next_to_concat();
}
case op::Star:
case op::FStar:
{
formula bo = f;
unsigned min = f.min();
unsigned max = f.max();
assert(max > 0);
// we will interpret
// c[*i..j]
// or c[:*i..j]
// as
// c;c[*i-1..j-1]
// or c:c[*i-1..j-1]
// \........../
// this is f
unsigned min2 = (min == 0) ? 0 : (min - 1);
unsigned max2 =
max == formula::unbounded() ? formula::unbounded() : (max - 1);
f = formula::bunop(o, f[0], min2, max2);
// If we have something to append, we can actually append it
// to f. This is correct even in the case of FStar, as f
// cannot accept [*0].
if (to_concat_)
f = formula::Concat({f, to_concat_});
if (o == op::Star)
{
if (!bo[0].accepts_eword())
{
// f*;g -> f;f*;g | g
//
// If f does not accept the empty word, we can easily
// add "f*;g" as to_concat_ when translating f.
bdd res = recurse(bo[0], f);
if (min == 0)
res |= now_to_concat();
return res;
}
else
{
// if "f" accepts the empty word, doing the above
// would lead to an infinite loop:
// f*;g -> f;f*;g | g
// f;f*;g -> f*;g | ...
//
// So we do it in three steps:
// 1. translate f,
// 2. append f*;g to all destinations
// 3. add |g
bdd res = recurse(bo[0]);
// f*;g -> f;f*;g
minato_isop isop(res);
bdd cube;
res = bddfalse;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest.is(op::eword))
{
res |= label &
bdd_ithvar(dict_.register_next_variable(f));
}
else
{
formula dest2 = formula::Concat({dest, f});
if (!dest2.is_ff())
res |= label & bdd_ithvar
(dict_.register_next_variable(dest2));
}
}
return res | now_to_concat();
}
}
else // FStar
{
bdd tail_bdd;
bool tail_computed = false;
minato_isop isop(recurse(bo[0]));
bdd cube;
bdd res = bddfalse;
if (min == 0)
{
// f[:*0..j];g can be satisfied by X(g).
res = next_to_concat();
}
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula dest = dict_.conj_bdd_to_sere(dest_bdd);
// The destination is a final state. Make sure we
// can also exit if tail is satisfied. We do not
// even have to check the tail if min == 0.
if (dest.accepts_eword() && min != 0)
{
if (!tail_computed)
{
tail_bdd = recurse(f); // FIXME: inf call!!!
tail_computed = true;
}
res |= label & tail_bdd;
}
// If the destination is not 0 or [*0], it means it
// can have successors. Fusion the tail.
if (!dest.is(op::ff, op::eword))
{
formula dest2 = formula::Fusion({dest, f});
if (!dest2.is_ff())
res |= label &
bdd_ithvar(dict_.register_next_variable(dest2));
}
}
return res;
}
}
case op::Xor:
case op::Implies:
case op::Equiv:
case op::U:
case op::R:
case op::W:
case op::M:
case op::EConcat:
case op::EConcatMarked:
case op::UConcat:
case op::And:
case op::Or:
// Not a rational operator
SPOT_UNREACHABLE();
case op::AndNLM:
{
unsigned s = f.size();
vec final;
vec non_final;
for (auto g: f)
if (g.accepts_eword())
final.push_back(g);
else
non_final.push_back(g);
if (non_final.empty())
// (a* & b*);c = (a*|b*);c
return recurse_and_concat(formula::OrRat(std::move(final)));
if (!final.empty())
{
// let F_i be final formulae
// N_i be non final formula
// (F_1 & ... & F_n & N_1 & ... & N_m)
// = (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
// | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
formula f = formula::OrRat(std::move(final));
formula n = formula::AndNLM(std::move(non_final));
formula t = formula::one_star();
formula ft = formula::Concat({f, t});
formula nt = formula::Concat({n, t});
formula ftn = formula::AndRat({ft, n});
formula fnt = formula::AndRat({f, nt});
return recurse_and_concat(formula::OrRat({ftn, fnt}));
}
// No final formula.
// Translate N_1 & N_2 & ... & N_n into
// N_1 && (N_2;[*]) && ... && (N_n;[*])
// | (N_1;[*]) && N_2 && ... && (N_n;[*])
// | (N_1;[*]) && (N_2;[*]) && ... && N_n
formula star = formula::one_star();
vec disj;
for (unsigned n = 0; n < s; ++n)
{
vec conj;
for (unsigned m = 0; m < s; ++m)
{
formula g = f[m];
if (n != m)
g = formula::Concat({g, star});
conj.push_back(g);
}
disj.push_back(formula::AndRat(std::move(conj)));
}
return recurse_and_concat(formula::OrRat(std::move(disj)));
}
case op::AndRat:
{
bdd res = bddtrue;
for (auto g: f)
res &= recurse(g);
// If we have translated (a* && b*) in (a* && b*);c, we
// have to append ";c" to all destinations.
res = concat_dests(res);
if (f.accepts_eword())
res |= now_to_concat();
return res;
}
case op::OrRat:
{
bdd res = bddfalse;
for (auto g: f)
res |= recurse_and_concat(g);
return res;
}
case op::Concat:
{
vec v;
unsigned s = f.size();
v.reserve(s);
for (unsigned n = 1; n < s; ++n)
v.push_back(f[n]);
if (to_concat_)
v.push_back(to_concat_);
return recurse(f[0], formula::Concat(std::move(v)));
}
case op::Fusion:
{
assert(f.size() >= 2);
// the head
bdd res = recurse(f[0]);
// the tail
formula tail = f.all_but(0);
bdd tail_bdd;
bool tail_computed = false;
//trace_ltl_bdd(dict_, res);
minato_isop isop(res);
bdd cube;
res = bddfalse;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest.accepts_eword())
{
// The destination is a final state. Make sure we
// can also exit if tail is satisfied.
if (!tail_computed)
{
tail_bdd = recurse(tail);
tail_computed = true;
}
res |= concat_dests(label & tail_bdd);
}
// If the destination is not 0 or [*0], it means it
// can have successors. Fusion the tail and append
// anything to concatenate.
if (!dest.is(op::ff, op::eword))
{
formula dest2 = formula::Fusion({dest, tail});
if (to_concat_)
dest2 = formula::Concat({dest2, to_concat_});
if (!dest2.is_ff())
res |= label
& bdd_ithvar(dict_.register_next_variable(dest2));
}
}
return res;
}
}
SPOT_UNREACHABLE();
}
bdd
recurse(formula f, formula to_concat = nullptr)
{
return translate_ratexp(f, dict_, to_concat);
}
bdd
recurse_and_concat(formula f)
{
return translate_ratexp(f, dict_, to_concat_);
}
private:
translate_dict& dict_;
formula to_concat_;
};
bdd
translate_ratexp(formula f, translate_dict& dict,
formula to_concat)
{
bdd res;
if (!f.is_boolean())
{
ratexp_trad_visitor v(dict, to_concat);
res = v.visit(f);
}
else
{
res = dict.boolean_to_bdd(f);
// See comment for similar code in next_to_concat.
if (!to_concat)
to_concat = formula::eword();
int x = dict.register_next_variable(to_concat);
res &= bdd_ithvar(x);
}
return res;
}
ratexp_to_dfa::ratexp_to_dfa(translate_dict& dict)
: dict_(dict)
{
}
ratexp_to_dfa::~ratexp_to_dfa()
{
for (auto i: automata_)
delete i.second;
}
ratexp_to_dfa::labelled_aut
ratexp_to_dfa::translate(formula f)
{
assert(f.is_in_nenoform());
auto a = make_twa_graph(dict_.dict);
auto namer = a->create_namer();
typedef std::set set_type;
set_type formulae_to_translate;
formulae_to_translate.insert(f);
namer->new_state(f);
//a->set_init_state(f);
while (!formulae_to_translate.empty())
{
// Pick one formula.
formula now = *formulae_to_translate.begin();
formulae_to_translate.erase(formulae_to_translate.begin());
// Translate it
bdd res = translate_ratexp(now, dict_);
// Generate (deterministic) successors
bdd var_set = bdd_existcomp(bdd_support(res), dict_.var_set);
bdd all_props = bdd_existcomp(res, dict_.var_set);
while (all_props != bddfalse)
{
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= label;
formula dest =
dict_.bdd_to_sere(bdd_exist(res & label, dict_.var_set));
f2a_t::const_iterator i = f2a_.find(dest);
if (i != f2a_.end() && i->second.first == nullptr)
continue;
if (!namer->has_state(dest))
{
formulae_to_translate.insert(dest);
namer->new_state(dest);
}
namer->new_edge(now, dest, label);
}
}
// The following code trims the automaton in a crude way by
// eliminating SCCs that are not coaccessible. It does not
// actually remove the states, it simply marks the corresponding
// formulae as associated to the null pointer in the f2a_ map.
// The method succ() interprets this as False.
scc_info* sm = new scc_info(a);
unsigned scc_count = sm->scc_count();
// Remember whether each SCC is coaccessible.
std::vector coaccessible(scc_count);
// SCC are numbered in topological order
for (unsigned n = 0; n < scc_count; ++n)
{
// The SCC is coaccessible if any of its states
// is final (i.e., it accepts [*0])...
bool coacc = false;
auto& st = sm->states_of(n);
for (auto l: st)
if (namer->get_name(l).accepts_eword())
{
coacc = true;
break;
}
if (!coacc)
{
// ... or if any of its successors is coaccessible.
for (unsigned i: sm->succ(n))
if (coaccessible[i])
{
coacc = true;
break;
}
}
if (!coacc)
{
// Mark all formulas of this SCC as useless.
for (auto f: st)
f2a_.emplace(std::piecewise_construct,
std::forward_as_tuple(namer->get_name(f)),
std::forward_as_tuple(nullptr, nullptr));
}
else
{
for (auto f: st)
f2a_.emplace(std::piecewise_construct,
std::forward_as_tuple(namer->get_name(f)),
std::forward_as_tuple(a, namer));
}
coaccessible[n] = coacc;
}
delete sm;
if (coaccessible[scc_count - 1])
{
automata_.emplace_back(a, namer);
return labelled_aut(a, namer);
}
else
{
delete namer;
return labelled_aut(nullptr, nullptr);
}
}
// FIXME: use the new tgba::succ() interface
std::tuple
ratexp_to_dfa::succ(formula f)
{
f2a_t::const_iterator it = f2a_.find(f);
labelled_aut a;
if (it != f2a_.end())
a = it->second;
else
a = translate(f);
// If a is null, f has an empty language.
if (!a.first)
return std::forward_as_tuple(nullptr, nullptr, nullptr);
auto namer = a.second;
assert(namer->has_state(f));
auto st = a.first->state_from_number(namer->get_state(f));
return std::forward_as_tuple(a.first, namer, st);
}
// The rewrite rules used here are adapted from Jean-Michel
// Couvreur's FM'99 paper, augmented to support rational operators
// (from PSL), and a view other optimization. See the
// Duret-Lutz's paper "LTL Translation Improvements in Spot 1.0"
// (IJCCBS 2014), for the optimization. The PSL stuff is
// unpublished yet.
class ltl_trad_visitor
{
public:
ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
bool exprop = false, bool recurring = false)
: dict_(dict), rat_seen_(false), has_marked_(false),
mark_all_(mark_all), exprop_(exprop), recurring_(recurring)
{
}
virtual
~ltl_trad_visitor()
{
}
bdd
neg_of(formula node)
{
return recurse(dict_.ls->negative_normal_form(node, true));
}
void
reset(bool mark_all)
{
rat_seen_ = false;
has_marked_ = false;
mark_all_ = mark_all;
}
const translate_dict&
get_dict() const
{
return dict_;
}
bool
has_rational() const
{
return rat_seen_;
}
bool
has_marked() const
{
return has_marked_;
}
bdd
visit(formula node)
{
switch (op o = node.kind())
{
case op::ff:
return bddfalse;
case op::tt:
return bddtrue;
case op::eword:
SPOT_UNIMPLEMENTED();
case op::ap:
return bdd_ithvar(dict_.register_proposition(node));
case op::F:
{
// r(Fy) = r(y) + a(y)X(Fy) if not recurring
// r(Fy) = r(y) + a(y) if recurring (see comment in G)
formula child = node[0];
bdd y = recurse(child);
bdd a = bdd_ithvar(dict_.register_a_variable(child));
if (!recurring_)
a &= bdd_ithvar(dict_.register_next_variable(node));
if (dict_.unambiguous)
a &= neg_of(child);
return y | a;
}
case op::G:
{
// Couvreur's paper suggests that we optimize GFy
// as
// r(GFy) = (r(y) + a(y))X(GFy)
// instead of
// r(GFy) = (r(y) + a(y)X(Fy)).X(GFy)
// but this is just a particular case
// of the "merge all states with the same
// symbolic rewriting" optimization we do later.
// (r(Fy).r(GFy) and r(GFy) have the same symbolic
// rewriting, see Fig.6 in Duret-Lutz's VECOS'11
// paper for an illustration.)
//
// We used to keep things simple and not implement this
// step, that does not change the result. However it
// turns out that this extra optimization significantly
// speeds up (≈×2) the translation of formulas of the
// form GFa & GFb & ... GFz
//
// Unfortunately, our rewrite rules will put such a
// formula as G(Fa & Fb & ... Fz) which has a different
// form. We could encode specifically
// r(G(Fa & Fb & c)) =
// (r(a)+a(a))(r(b)+a(b))r(c)X(G(Fa & Fb & c))
// but that would be lots of special cases for G.
// And if we do it for G, why not for R?
//
// Here we generalize this trick by propagating
// to "recurring" information to subformulas
// and letting them decide.
// r(Gy) = r(y)X(Gy)
int x = dict_.register_next_variable(node);
bdd y = recurse(node[0], /* recurring = */ true);
return y & bdd_ithvar(x);
}
case op::Not:
{
// r(!y) = !r(y)
return bdd_not(recurse(node[0]));
}
case op::X:
{
// r(Xy) = Next[y]
// r(X(a&b&c)) = Next[a]&Next[b]&Next[c]
// r(X(a|b|c)) = Next[a]|Next[b]|Next[c]
//
// The special case for And is to that
// (p&XF!p)|(!p&XFp)|X(Fp&F!p) (1)
// get translated as
// (p&XF!p)|(!p&XFp)|XFp&XF!p (2)
// and then automatically reduced to
// (p&XF!p)|(!p&XFp)
//
// Formula (2) appears as an example of Boolean
// simplification in Wring, but our LTL rewriting
// rules tend to rewrite it as (1).
//
// The special case for Or follows naturally, but it's
// effect is less clear. Benchmarks show that it
// reduces the number of states and transitions, but it
// increases the number of non-deterministic states...
formula y = node[0];
bdd res;
if (y.is(op::And))
{
res = bddtrue;
for (auto f: y)
res &= bdd_ithvar(dict_.register_next_variable(f));
}
#if 0
else if (y.is(op::Or))
{
res = bddfalse;
for (auto f: y)
res |= bdd_ithvar(dict_.register_next_variable(f));
}
#endif
else
{
res = bdd_ithvar(dict_.register_next_variable(y));
}
return res;
}
case op::Closure:
{
// rat_seen_ = true;
formula f = node[0];
auto p = dict_.transdfa.succ(f);
bdd res = bddfalse;
auto aut = std::get<0>(p);
auto namer = std::get<1>(p);
auto st = std::get<2>(p);
if (!aut)
return res;
for (auto i: aut->succ(st))
{
bdd label = i->cond();
const state* s = i->dst();
formula dest =
namer->get_name(aut->state_number(s));
if (dest.accepts_eword())
{
res |= label;
}
else
{
formula dest2 = formula::unop(o, dest);
if (dest2.is_ff())
continue;
res |=
label & bdd_ithvar(dict_.register_next_variable(dest2));
}
}
return res;
}
case op::NegClosureMarked:
has_marked_ = true;
case op::NegClosure:
rat_seen_ = true;
{
if (mark_all_)
{
o = op::NegClosureMarked;
has_marked_ = true;
}
formula f = node[0];
auto p = dict_.transdfa.succ(f);
auto aut = std::get<0>(p);
if (!aut)
return bddtrue;
auto namer = std::get<1>(p);
auto st = std::get<2>(p);
bdd res = bddfalse;
bdd missing = bddtrue;
for (auto i: aut->succ(st))
{
bdd label = i->cond();
const state* s = i->dst();
formula dest = namer->get_name(aut->state_number(s));
missing -= label;
if (!dest.accepts_eword())
{
formula dest2 = formula::unop(o, dest);
if (dest2.is_ff())
continue;
res |= label
& bdd_ithvar(dict_.register_next_variable(dest2));
}
}
res |= missing &
// stick X(1) to preserve determinism.
bdd_ithvar(dict_.register_next_variable(formula::tt()));
//trace_ltl_bdd(dict_, res_);
return res;
}
case op::Star:
case op::FStar:
SPOT_UNREACHABLE(); // Not an LTL operator
// r(f1 logical-op f2) = r(f1) logical-op r(f2)
case op::Xor:
case op::Implies:
case op::Equiv:
// These operators should only appear in Boolean formulas,
// which must have been dealt with earlier (in
// translate_dict::ltl_to_bdd()).
SPOT_UNREACHABLE();
case op::U:
{
bdd f1 = recurse(node[0]);
bdd f2 = recurse(node[1]);
// r(f1 U f2) = r(f2) + a(f2)r(f1)X(f1 U f2) if not recurring
// r(f1 U f2) = r(f2) + a(f2)r(f1) if recurring
f1 &= bdd_ithvar(dict_.register_a_variable(node[1]));
if (!recurring_)
f1 &= bdd_ithvar(dict_.register_next_variable(node));
if (dict_.unambiguous)
f1 &= neg_of(node[1]);
return f2 | f1;
}
case op::W:
{
// r(f1 W f2) = r(f2) + r(f1)X(f1 W f2) if not recurring
// r(f1 W f2) = r(f2) + r(f1) if recurring
//
// also f1 W 0 = G(f1), so we can enable recurring on f1
bdd f1 = recurse(node[0], node[1].is_ff());
bdd f2 = recurse(node[1]);
if (!recurring_)
f1 &= bdd_ithvar(dict_.register_next_variable(node));
if (dict_.unambiguous)
f1 &= neg_of(node[1]);
return f2 | f1;
}
case op::R:
{
// r(f2) is in factor, so we can propagate the recurring_ flag.
// if f1=false, we can also turn it on (0 R f = Gf).
bdd res = recurse(node[1],
recurring_ || node[0].is_ff());
// r(f1 R f2) = r(f2)(r(f1) + X(f1 R f2)) if not recurring
// r(f1 R f2) = r(f2) if recurring
if (recurring_ && !dict_.unambiguous)
return res;
bdd f1 = recurse(node[0]);
bdd f2 = bddtrue;
if (!recurring_)
f2 = bdd_ithvar(dict_.register_next_variable(node));
if (dict_.unambiguous)
f2 &= neg_of(node[0]);
return res & (f1 | f2);
}
case op::M:
{
bdd res = recurse(node[1], recurring_);
bdd f1 = recurse(node[0]);
// r(f1 M f2) = r(f2)(r(f1) + a(f1&f2)X(f1 M f2)) if not recurring
// r(f1 M f2) = r(f2)(r(f1) + a(f1&f2)) if recurring
//
// Note that the rule above differs from the one given
// in Figure 2 of
// "LTL translation improvements in Spot 1.0",
// A. Duret-Lutz. IJCCBS 5(1/2):31-54, March 2014.
// Both rules should be OK, but this one is a better fit
// to the promises simplifications performed in
// register_a_variable() (see comments in this function).
// We do not want a U (c M d) to generate two different
// promises. Generating c&d also makes the output similar
// to what we would get with the equivalent a U (d U (c & d)).
//
// Here we just appear to emit a(f1 M f2) and the conversion
// to a(f1&f2) is done by register_a_variable().
bdd a = bdd_ithvar(dict_.register_a_variable(node));
if (!recurring_)
a &= bdd_ithvar(dict_.register_next_variable(node));
if (dict_.unambiguous)
a &= neg_of(node[0]);
return res & (f1 | a);
}
case op::EConcatMarked:
has_marked_ = true;
/* fall through */
case op::EConcat:
rat_seen_ = true;
{
// Recognize f2 on transitions going to destinations
// that accept the empty word.
bdd f2 = recurse(node[1]);
bdd f1 = translate_ratexp(node[0], dict_);
bdd res = bddfalse;
if (mark_all_)
{
o = op::EConcatMarked;
has_marked_ = true;
}
if (exprop_)
{
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
bdd all_props = bdd_existcomp(f1, dict_.var_set);
while (all_props != bddfalse)
{
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= label;
formula dest =
dict_.bdd_to_sere(bdd_exist(f1 & label,
dict_.var_set));
formula dest2 = formula::binop(o, dest, node[1]);
bool unamb = dict_.unambiguous;
if (!dest2.is_ff())
{
// If the rhs is Boolean, the
// unambiguous code will produce a more
// deterministic automaton at no additional
// cost. You can test this on
// G({{1;1}*}<>->a)
if (node[1].is_boolean())
unamb = true;
bdd toadd = label &
bdd_ithvar(dict_.register_next_variable(dest2));
if (dest.accepts_eword() && unamb)
toadd &= neg_of(node[1]);
res |= toadd;
}
if (dest.accepts_eword())
{
bdd toadd = label & f2;
if (unamb)
// Preserve determinism
toadd &= bdd_ithvar(dict_.register_next_variable
(formula::tt()));
res |= toadd;
}
}
}
else
{
minato_isop isop(f1);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest.is(op::eword))
{
res |= label & f2;
}
else
{
formula dest2 = formula::binop(o, dest, node[1]);
if (!dest2.is_ff())
res |= label &
bdd_ithvar(dict_.register_next_variable(dest2));
if (dest.accepts_eword())
res |= label & f2;
}
}
}
return res;
}
case op::UConcat:
{
// Transitions going to destinations accepting the empty
// word should recognize f2, and the automaton for f1
// should be understood as universal.
//
// The crux of this translation (i.e., the
// interpretation of first() as a universal automaton,
// and using implication to encode it) was explained
// to me (adl) by Felix Klaedtke.
bdd f2 = recurse(node[1]);
bdd f1 = translate_ratexp(node[0], dict_);
if (exprop_)
{
bdd res = bddfalse;
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
bdd all_props = bdd_existcomp(f1, dict_.var_set);
bdd missing = !all_props;
while (all_props != bddfalse)
{
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= label;
formula dest =
dict_.bdd_to_sere(bdd_exist(f1 & label, dict_.var_set));
formula dest2 = formula::binop(o, dest, node[1]);
bdd udest =
bdd_ithvar(dict_.register_next_variable(dest2));
if (dest.accepts_eword())
udest &= f2;
res |= label & udest;
}
// Make the automaton complete.
res |= missing &
// stick X(1) to preserve determinism.
bdd_ithvar(dict_.register_next_variable(formula::tt()));
return res;
}
else
{
bdd res = bddtrue;
minato_isop isop(f1);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula dest = dict_.conj_bdd_to_sere(dest_bdd);
formula dest2 = formula::binop(o, dest, node[1]);
bdd udest =
bdd_ithvar(dict_.register_next_variable(dest2));
if (dest.accepts_eword())
udest &= f2;
res &= bdd_apply(label, udest, bddop_imp);
}
return res;
}
}
case op::And:
{
formula_set implied;
implied_subformulae(node, implied);
bdd res = bddtrue;
for (auto sub: node)
{
// Skip implied subformula. For instance
// when translating Fa & GFa, we should not
// attempt to translate Fa.
//
// This optimization combines nicely with the
// "recurring" optimization whereby GFp will be
// translated as r(GFp) = (r(p) | a(p))X(GFp)
// without showing Fp instead of r(GFp) =
// r(Fp)X(GFp). See the comment for the translation
// of G.
if (implied.find(sub) != implied.end())
continue;
// Propagate the recurring_ flag so that
// G(Fa & Fb) get optimized. See the comment in
// the case handling G.
res &= recurse(sub, recurring_);
}
return res;
}
case op::Or:
{
bdd res = bddfalse;
if (!dict_.unambiguous)
{
for (auto sub: node)
res |= recurse(sub);
}
else
{
bdd prev = bddtrue;
for (auto sub: node)
{
res |= prev & recurse(sub);
prev &= neg_of(sub);
}
}
return res;
}
case op::Concat:
case op::Fusion:
case op::AndNLM:
case op::AndRat:
case op::OrRat:
SPOT_UNREACHABLE(); // Not an LTL operator
}
SPOT_UNREACHABLE();
return bddfalse;
}
bdd
recurse(formula f, bool recurring = false)
{
const translate_dict::translated& t =
dict_.ltl_to_bdd(f, mark_all_, recurring);
rat_seen_ |= t.has_rational;
has_marked_ |= t.has_marked;
return t.symbolic;
}
private:
translate_dict& dict_;
bool rat_seen_;
bool has_marked_;
bool mark_all_;
bool exprop_;
bool recurring_;
};
const translate_dict::translated&
translate_dict::ltl_to_bdd(formula f, bool mark_all, bool recurring)
{
flagged_formula ff;
ff.f = f;
ff.flags =
((mark_all || f.is_ltl_formula()) ? flags_mark_all : flags_none)
| (recurring ? flags_recurring : flags_none);
flagged_formula_to_bdd_map::const_iterator i = ltl_bdd_.find(ff);
if (i != ltl_bdd_.end())
return i->second;
translated t;
if (f.is_boolean())
{
t.symbolic = boolean_to_bdd(f);
t.has_rational = false;
t.has_marked = false;
}
else
{
ltl_trad_visitor v(*this, mark_all, exprop, recurring);
t.symbolic = v.visit(f);
t.has_rational = v.has_rational();
t.has_marked = v.has_marked();
}
return ltl_bdd_.emplace(ff, t).first->second;
}
// Check whether a formula has a R, W, or G operator at its
// top-level (preceding logical operators do not count).
bool ltl_possible_fair_loop_check(formula f)
{
if (f.is(op::G) || f.is(op::R, op::W))
return true;
if (f.is(op::Xor, op::Equiv) || f.is(op::Implies)
|| f.is(op::And, op::Or))
for (auto g: f)
if (ltl_possible_fair_loop_check(g))
return true;
return false;
}
// Check whether a formula can be part of a fair loop.
// Cache the result for efficiency.
class possible_fair_loop_checker
{
public:
bool
check(formula f)
{
pfl_map::const_iterator i = pfl_.find(f);
if (i != pfl_.end())
return i->second;
return pfl_[f] = ltl_possible_fair_loop_check(f);
}
private:
typedef std::unordered_map pfl_map;
pfl_map pfl_;
};
class formula_canonizer
{
public:
formula_canonizer(translate_dict& d,
bool fair_loop_approx, bdd all_promises)
: fair_loop_approx_(fair_loop_approx),
all_promises_(all_promises),
d_(d)
{
// For cosmetics, register 1 initially, so the algorithm will
// not register an equivalent formula first.
b2f_[bddtrue] = formula::tt();
}
// This wrap translate_dict::ltl_to_bdd() for top-level formulas.
// In case the formula contains SERE operators, we need to decide
// if we have to mark unmarked operators, and more
const translate_dict::translated&
translate(formula f, bool* new_flag = nullptr)
{
// Use the cached result if available.
formula_to_bdd_map::const_iterator i = f2b_.find(f);
if (i != f2b_.end())
return i->second;
if (new_flag)
*new_flag = true;
// Perform the actual translation.
translate_dict::translated t = d_.ltl_to_bdd(f, !f.is_marked());
// std::cerr << "-----" << std::endl;
// std::cerr << "Formula: " << str_psl(f) << std::endl;
// std::cerr << "Rational: " << t.has_rational << std::endl;
// std::cerr << "Marked: " << t.has_marked << std::endl;
// std::cerr << "Mark all: " << !f.is_marked() << std::endl;
// std::cerr << "Transitions:" << std::endl;
// trace_ltl_bdd(d_, t.symbolic);
// std::cerr << "-----" << std::endl;
if (t.has_rational)
{
bdd res = bddfalse;
bdd var_set = bdd_existcomp(bdd_support(t.symbolic), d_.var_set);
bdd all_props = bdd_existcomp(t.symbolic, d_.var_set);
while (all_props != bddfalse)
{
bdd one_prop_set = bddtrue;
if (d_.exprop)
one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= one_prop_set;
minato_isop isop(t.symbolic & one_prop_set);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, d_.next_set);
bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
formula dest =
d_.conj_bdd_to_formula(dest_bdd);
// Handle a Miyano-Hayashi style unrolling for
// rational operators. Marked nodes correspond to
// subformulae in the Miyano-Hayashi set.
dest = d_.mt.simplify_mark(dest);
if (dest.is_marked())
{
// Make the promise that we will exit marked sets.
int a =
d_.register_a_variable(formula::tt());
label &= bdd_ithvar(a);
}
else
{
// We have no marked operators, but still
// have other rational operator to check.
// Start a new marked cycle.
dest = d_.mt.mark_concat_ops(dest);
}
// Note that simplify_mark may have changed dest.
dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
res |= label & dest_bdd;
}
}
t.symbolic = res;
// std::cerr << "Marking rewriting:" << std::endl;
// trace_ltl_bdd(v_.get_dict(), t.symbolic);
}
// Apply the fair-loop approximation if requested.
if (fair_loop_approx_)
{
// If the source cannot possibly be part of a fair
// loop, make all possible promises.
if (fair_loop_approx_
&& f != formula::tt()
&& !pflc_.check(f))
t.symbolic &= all_promises_;
}
// Register the reverse mapping if it is not already done.
if (b2f_.find(t.symbolic) == b2f_.end())
b2f_[t.symbolic] = f;
return f2b_.emplace(f, t).first->second;
}
formula
canonize(formula f)
{
bool new_variable = false;
bdd b = translate(f, &new_variable).symbolic;
bdd_to_formula_map::iterator i = b2f_.find(b);
// Since we have just translated the formula, it is
// necessarily in b2f_.
assert(i != b2f_.end());
if (i->second != f)
// The translated bdd maps to an already seen formula.
f = i->second;
return f;
}
bdd used_vars()
{
return d_.var_set;
}
private:
// Map a representation of successors to a canonical formula.
// We do this because many formulae (such as `aR(bRc)' and
// `aR(bRc).(bRc)') are equivalent, and are trivially identified
// by looking at the set of successors.
typedef std::unordered_map bdd_to_formula_map;
bdd_to_formula_map b2f_;
// Map each formula to its associated bdd. This speed things up when
// the same formula is translated several times, which especially
// occurs when canonize() is called repeatedly inside exprop.
typedef std::unordered_map formula_to_bdd_map;
formula_to_bdd_map f2b_;
possible_fair_loop_checker pflc_;
bool fair_loop_approx_;
bdd all_promises_;
translate_dict& d_;
};
}
namespace
{
struct transition
{
formula dest;
bdd prom;
bdd cond;
transition(formula dest, bdd cond, bdd prom)
: dest(dest), prom(prom), cond(cond)
{
}
transition(const transition& other)
: dest(other.dest), prom(other.prom), cond(other.cond)
{
}
bool operator<(const transition& other) const
{
if (dest < other.dest)
return true;
if (other.dest < dest)
return false;
if (prom.id() < other.prom.id())
return true;
if (prom.id() > other.prom.id())
return false;
return cond.id() < other.cond.id();
}
};
bool postponement_cmp(const transition& lhs, const transition& rhs)
{
if (lhs.prom.id() < rhs.prom.id())
return true;
if (lhs.prom.id() > rhs.prom.id())
return false;
if (lhs.cond.id() < rhs.cond.id())
return true;
if (lhs.cond.id() > rhs.cond.id())
return false;
return lhs.dest < rhs.dest;
}
typedef std::vector dest_map;
}
twa_graph_ptr
ltl_to_tgba_fm(formula f2, const bdd_dict_ptr& dict,
bool exprop, bool symb_merge, bool branching_postponement,
bool fair_loop_approx, const atomic_prop_set* unobs,
tl_simplifier* simplifier, bool unambiguous)
{
tl_simplifier* s = simplifier;
// Simplify the formula, if requested.
if (s)
{
// This will normalize the formula regardless of the
// configuration of the simplifier.
f2 = s->simplify(f2);
}
else
{
// Otherwise, at least normalize the formula. We want all the
// negations on the atomic propositions. We also suppress
// logic abbreviations such as <=>, =>, or XOR, since they
// would involve negations at the BDD level.
s = new tl_simplifier(dict);
f2 = s->negative_normal_form(f2, false);
}
assert(f2.is_in_nenoform());
typedef std::set set_type;
set_type formulae_to_translate;
assert(dict == s->get_dict());
twa_graph_ptr a = make_twa_graph(dict);
auto namer = a->create_namer();
translate_dict d(a, s, exprop, f2.is_syntactic_persistence(),
unambiguous);
// Compute the set of all promises that can possibly occur inside
// the formula. These are the right-hand sides of U or F
// operators.
bdd all_promises = bddtrue;
if (fair_loop_approx || unobs)
f2.traverse([&all_promises, &d](formula f)
{
if (f.is(op::F))
all_promises &=
bdd_ithvar(d.register_a_variable(f[0]));
else if (f.is(op::U))
all_promises &=
bdd_ithvar(d.register_a_variable(f[1]));
else if (f.is(op::M))
all_promises &=
bdd_ithvar(d.register_a_variable(f));
return f.is_boolean();
});
formula_canonizer fc(d, fair_loop_approx, all_promises);
// These are used when atomic propositions are interpreted as
// events. There are two kinds of events: observable events are
// those used in the formula, and unobservable events or other
// events that can occur at anytime. All events exclude each
// other.
bdd observable_events = bddfalse;
bdd unobservable_events = bddfalse;
if (unobs)
{
bdd neg_events = bddtrue;
auto aps = std::unique_ptr(atomic_prop_collect(f2));
for (auto pi: *aps)
{
int p = d.register_proposition(pi);
bdd pos = bdd_ithvar(p);
bdd neg = bdd_nithvar(p);
observable_events = (observable_events & neg) | (neg_events & pos);
neg_events &= neg;
}
for (auto pi: *unobs)
{
int p = d.register_proposition(pi);
bdd pos = bdd_ithvar(p);
bdd neg = bdd_nithvar(p);
unobservable_events = ((unobservable_events & neg)
| (neg_events & pos));
observable_events &= neg;
neg_events &= neg;
}
}
bdd all_events = observable_events | unobservable_events;
auto orig_f = f2;
// This is in case the initial state is equivalent to true...
if (symb_merge)
f2 = fc.canonize(f2);
formulae_to_translate.insert(f2);
a->set_init_state(namer->new_state(f2));
dest_map dests;
while (!formulae_to_translate.empty())
{
// Pick one formula.
formula now = *formulae_to_translate.begin();
formulae_to_translate.erase(formulae_to_translate.begin());
// Translate it into a BDD to simplify it.
const translate_dict::translated& t = fc.translate(now);
bdd res = t.symbolic;
if (res == bddfalse)
continue;
// Handle exclusive events.
if (unobs)
{
res &= observable_events;
int n = d.register_next_variable(now);
res |= unobservable_events & bdd_ithvar(n) & all_promises;
}
// We used to factor only Next and A variables while computing
// prime implicants, with
// minato_isop isop(res, d.next_set & d.a_set);
// in order to obtain transitions with formulae of atomic
// proposition directly, but unfortunately this led to strange
// factorizations. For instance f U g was translated as
// r(f U g) = g + a(g).r(X(f U g)).(f + g)
// instead of just
// r(f U g) = g + a(g).r(X(f U g)).f
// Of course both formulae are logically equivalent, but the
// latter is "more deterministic" than the former, so it should
// be preferred.
//
// Therefore we now factor all variables. This may lead to more
// transitions than necessary (e.g., r(f + g) = f + g will be
// coded as two transitions), but we later merge all transitions
// with same source/destination and acceptance conditions. This
// is the goal of the `dests' hash.
//
// Note that this is still not optimal. For instance it is
// better to encode `f U g' as
// r(f U g) = g + a(g).r(X(f U g)).f.!g
// because that leads to a deterministic automaton. In order
// to handle this, we take the conditions of any transition
// going to true (it's `g' here), and remove it from the other
// transitions.
//
// In `exprop' mode, considering all possible combinations of
// outgoing propositions generalizes the above trick.
dests.clear();
// Compute all outgoing arcs.
// If EXPROP is set, we will refine the symbolic
// representation of the successors for all combinations of
// the atomic properties involved in the formula.
// VAR_SET is the set of these properties.
bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
// ALL_PROPS is the combinations we have yet to consider.
// We used to start with `all_props = bddtrue', but it is
// more efficient to start with the set of all satisfiable
// variables combinations.
bdd all_props = bdd_existcomp(res, d.var_set);
while (all_props != bddfalse)
{
bdd one_prop_set = bddtrue;
if (exprop)
one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= one_prop_set;
// Compute prime implicants.
// The reason we use prime implicants and not bdd_satone()
// is that we do not want to get any negation in front of Next
// or Acc variables. We wouldn't know what to do with these.
// We never added negations in front of these variables when
// we built the BDD, so prime implicants will not "invent" them.
//
// FIXME: minato_isop is quite expensive, and I (=adl)
// don't think we really care that much about getting the
// smalled sum of products that minato_isop strives to
// compute. Given that Next and Acc variables should
// always be positive, maybe there is a faster way to
// compute the successors? E.g. using bdd_satone() and
// ignoring negated Next and Acc variables.
minato_isop isop(res & one_prop_set);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, d.next_set);
bdd dest_bdd = bdd_existcomp(cube, d.next_set);
formula dest = d.conj_bdd_to_formula(dest_bdd);
// Simplify the formula, if requested.
if (simplifier)
{
dest = simplifier->simplify(dest);
// Ignore the arc if the destination reduces to false.
if (dest.is_ff())
continue;
}
// If we already know a state with the same
// successors, use it in lieu of the current one.
if (symb_merge)
dest = fc.canonize(dest);
bdd conds = bdd_existcomp(label, d.var_set);
bdd promises = bdd_existcomp(label, d.a_set);
dests.push_back(transition(dest, conds, promises));
}
}
assert(dests.size() > 0);
if (branching_postponement && dests.size() > 1)
{
std::sort(dests.begin(), dests.end(), postponement_cmp);
// Iterate over all dests, and merge the destination of
// transitions with identical labels.
dest_map::iterator out = dests.begin();
dest_map::const_iterator in = out;
do
{
transition t = *in;
while (++in != dests.end()
&& t.cond == in->cond && t.prom == in->prom)
t.dest = formula::Or({t.dest, in->dest});
*out++ = t;
}
while (in != dests.end());
dests.erase(out, dests.end());
}
std::sort(dests.begin(), dests.end());
// If we have some transitions to true, they are the first
// ones. Remove the sum of their conditions from other
// transitions. It might sounds that this is not needed when
// exprop is used, but in fact it is complementary.
//
// Consider
// f = r(X(1) R p) = p.(1 + r(X(1) R p))
// with exprop the two outgoing arcs would be
// p p
// f ----> 1 f ----> f
//
// where in fact we could output
// p
// f ----> 1
//
// because there is no point in looping on f if we can go to 1.
if (dests.front().dest.is_tt())
{
dest_map::iterator i = dests.begin();
bdd c = bddfalse;
while (i != dests.end() && i->dest.is_tt())
c |= i++->cond;
for (; i != dests.end(); ++i)
i->cond -= c;
}
// Create transitions in the automaton
{
dest_map::const_iterator in = dests.begin();
do
{
// Merge transitions with same destination and
// acceptance.
transition t = *in;
while (++in != dests.end()
&& t.prom == in->prom && t.dest == in->dest)
t.cond |= in->cond;
// Actually create the transition
if (t.cond != bddfalse)
{
// When translating LTL for an event-based logic
// with unobservable events, the 1 state should
// accept all events, even unobservable events.
if (unobs && t.dest.is_tt() && now.is_tt())
t.cond = all_events;
// Will this be a new state?
if (!namer->has_state(t.dest))
{
formulae_to_translate.insert(t.dest);
namer->new_state(t.dest);
}
namer->new_edge(now, t.dest, t.cond, d.bdd_to_mark(t.prom));
}
}
while (in != dests.end());
}
}
auto& acc = a->acc();
unsigned ns = a->num_states();
for (unsigned s = 0; s < ns; ++s)
for (auto& t: a->out(s))
t.acc = acc.comp(t.acc);
acc.set_generalized_buchi();
a->prop_inherently_weak(f2.is_syntactic_persistence());
a->prop_stutter_invariant(f2.is_syntactic_stutter_invariant());
if (orig_f.is_syntactic_guarantee())
{
a->prop_terminal(true);
assert(a->num_sets() <= 1);
}
// Currently the unambiguous option work only with LTL.
a->prop_unambiguous(f2.is_ltl_formula() && unambiguous);
// Set the following to true to preserve state names.
a->release_formula_namer(namer, false);
if (!simplifier)
// This should not be deleted before we have registered all propositions.
delete s;
return a;
}
}