// -*- coding: utf-8 -*-
// Copyright (C) 2008, 2009, 2010, 2012 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2004, 2005, 2007 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "randomgraph.hh"
#include "tgba/tgbaexplicit.hh"
#include "misc/random.hh"
#include "ltlast/atomic_prop.hh"
#include
#include
#include
#include
#include
namespace spot
{
namespace
{
std::string
st(int n)
{
std::stringstream s;
s << n;
return "S" + s.str();
}
std::string
acc(int n)
{
std::stringstream s;
s << n;
return "a" + s.str();
}
void
random_labels(tgba_explicit_string* aut,
state_explicit_string* src,
const state_explicit_string* dest,
int* props, int props_n, float t,
const std::list& accs, float a)
{
int val = 0;
int size = 0;
bdd p = bddtrue;
while (props_n)
{
if (size == 8 * sizeof(int))
{
p &= bdd_ibuildcube(val, size, props);
props += size;
val = 0;
size = 0;
}
val <<= 1;
val |= (drand() < t);
++size;
--props_n;
}
if (size > 0)
p &= bdd_ibuildcube(val, size, props);
bdd ac = bddfalse;
for (std::list::const_iterator i = accs.begin();
i != accs.end(); ++i)
if (drand() < a)
ac |= *i;
state_explicit_string::transition* u = aut->create_transition(src, dest);
aut->add_conditions(u, p);
aut->add_acceptance_conditions(u, ac);
}
}
tgba*
random_graph(int n, float d,
const ltl::atomic_prop_set* ap, bdd_dict* dict,
int n_acc, float a, float t,
ltl::environment* env)
{
assert(n > 0);
tgba_explicit_string* res = new tgba_explicit_string(dict);
int props_n = ap->size();
int* props = new int[props_n];
int pi = 0;
for (ltl::atomic_prop_set::const_iterator i = ap->begin();
i != ap->end(); ++i)
props[pi++] = dict->register_proposition(*i, res);
std::vector states(n);
// Indirect access to state[] to help random selection of successors.
std::vector state_randomizer(n);
std::list accs;
bdd allneg = bddtrue;
for (int i = 0; i < n_acc; ++i)
{
const ltl::formula* f = env->require(acc(i));
int v = dict->register_acceptance_variable(f, res);
res->declare_acceptance_condition(f);
allneg &= bdd_nithvar(v);
bdd b = bdd_ithvar(v);
accs.push_back(b);
}
for (std::list::iterator i = accs.begin(); i != accs.end(); ++i)
*i &= bdd_exist(allneg, *i);
// Using Sgi::hash_set instead of std::set for these sets is 3
// times slower (tested on a 50000 nodes example). Use an int
// (the index into states[]), not the tgba_explicit::state*
// directly, because the later would yield different graphs
// depending on the memory layout.
typedef std::set node_set;
node_set nodes_to_process;
node_set unreachable_nodes;
states[0] = res->add_state(st(0));
state_randomizer[0] = 0;
nodes_to_process.insert(0);
for (int i = 1; i < n; ++i)
{
states[i] = res->add_state(st(i));
state_randomizer[i] = i;
unreachable_nodes.insert(i);
}
// We want to connect each node to a number of successors between
// 1 and n. If the probability to connect to each successor is d,
// the number of connected successors follows a binomial distribution.
barand bin(n - 1, d);
while (!nodes_to_process.empty())
{
state_explicit_string* src = states[*nodes_to_process.begin()];
nodes_to_process.erase(nodes_to_process.begin());
// Choose a random number of successors (at least one), using
// a binomial distribution.
int nsucc = 1 + bin.rand();
// Connect to NSUCC randomly chosen successors. We want at
// least one unreachable successors among these if there are
// some.
bool saw_unreachable = false;
int possibilities = n;
while (nsucc--)
{
// No connection to unreachable successors so far. This
// is our last chance, so force it now.
if (nsucc == 0
&& !saw_unreachable
&& !unreachable_nodes.empty())
{
// Pick a random unreachable node.
int index = mrand(unreachable_nodes.size());
node_set::const_iterator i = unreachable_nodes.begin();
std::advance(i, index);
// Link it from src.
random_labels(res, src, states[*i], props, props_n, t, accs, a);
nodes_to_process.insert(*i);
unreachable_nodes.erase(i);
break;
}
else
{
// Pick the index of a random node.
int index = mrand(possibilities--);
// Permute it with state_randomizer[possibilities], so
// we cannot pick it again.
int x = state_randomizer[index];
state_randomizer[index] = state_randomizer[possibilities];
state_randomizer[possibilities] = x;
state_explicit_string* dest = states[x];
random_labels(res, src, dest, props, props_n, t, accs, a);
node_set::iterator j = unreachable_nodes.find(x);
if (j != unreachable_nodes.end())
{
nodes_to_process.insert(x);
unreachable_nodes.erase(j);
saw_unreachable = true;
}
}
}
// The node must have at least one successor.
assert(!src->empty());
}
// All nodes must be reachable.
assert(unreachable_nodes.empty());
delete[] props;
return res;
}
}