* src/ltlast/automatop.cc, src/ltlast/automatop.hh: Rename nfa as get_nfa to avoid a name clash with the `nfa' class. * src/ltlvisit/clone.cc, src/ltlvisit/nenoform.cc, src/ltlvisit/tostring.cc, src/tgbaalgos/eltl2tgba_lacim.cc: Use get_nfa instead of nfa. * src/tgba/tgbasafracomplement.cc: Don't use a const_reverse_iterator.
299 lines
7.4 KiB
C++
299 lines
7.4 KiB
C++
// Copyright (C) 2008, 2009 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
// et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "ltlast/visitor.hh"
|
|
#include "ltlast/allnodes.hh"
|
|
#include "ltlast/formula_tree.hh"
|
|
#include "ltlvisit/lunabbrev.hh"
|
|
#include "ltlvisit/nenoform.hh"
|
|
#include "tgba/tgbabddconcretefactory.hh"
|
|
#include <cassert>
|
|
|
|
#include "eltl2tgba_lacim.hh"
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
using namespace ltl;
|
|
|
|
/// \brief Recursively translate a formula into a BDD.
|
|
class eltl_trad_visitor : public const_visitor
|
|
{
|
|
public:
|
|
eltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
|
|
: fact_(fact), root_(root), finish_()
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~eltl_trad_visitor()
|
|
{
|
|
}
|
|
|
|
bdd
|
|
result()
|
|
{
|
|
return res_;
|
|
}
|
|
|
|
void
|
|
visit(const atomic_prop* node)
|
|
{
|
|
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
|
|
}
|
|
|
|
void
|
|
visit(const constant* node)
|
|
{
|
|
switch (node->val())
|
|
{
|
|
case constant::True:
|
|
res_ = bddtrue;
|
|
return;
|
|
case constant::False:
|
|
res_ = bddfalse;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const unop* node)
|
|
{
|
|
switch (node->op())
|
|
{
|
|
case unop::Not:
|
|
{
|
|
res_ = bdd_not(recurse(node->child()));
|
|
return;
|
|
}
|
|
case unop::Finish:
|
|
{
|
|
// Ensure finish_[node->child()] has been computed if
|
|
// node->child() is an automaton operator.
|
|
res_ = recurse(node->child());
|
|
finish_map_::const_iterator it = finish_.find(node->child());
|
|
if (it != finish_.end())
|
|
res_ = finish_[node->child()];
|
|
return;
|
|
}
|
|
case unop::X:
|
|
case unop::F:
|
|
case unop::G:
|
|
assert(!"unsupported operator");
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const binop* node)
|
|
{
|
|
bdd f1 = recurse(node->first());
|
|
bdd f2 = recurse(node->second());
|
|
|
|
switch (node->op())
|
|
{
|
|
case binop::Xor:
|
|
res_ = bdd_apply(f1, f2, bddop_xor);
|
|
return;
|
|
case binop::Implies:
|
|
res_ = bdd_apply(f1, f2, bddop_imp);
|
|
return;
|
|
case binop::Equiv:
|
|
res_ = bdd_apply(f1, f2, bddop_biimp);
|
|
return;
|
|
case binop::U:
|
|
case binop::R:
|
|
assert(!"unsupported operator");
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const multop* node)
|
|
{
|
|
int op = -1;
|
|
bool root = false;
|
|
switch (node->op())
|
|
{
|
|
case multop::And:
|
|
op = bddop_and;
|
|
res_ = bddtrue;
|
|
// When the root formula is a conjunction it's ok to
|
|
// consider all children as root formulae. This allows the
|
|
// root-G trick to save many more variable. (See the
|
|
// translation of G.)
|
|
root = root_;
|
|
break;
|
|
case multop::Or:
|
|
op = bddop_or;
|
|
res_ = bddfalse;
|
|
break;
|
|
}
|
|
assert(op != -1);
|
|
unsigned s = node->size();
|
|
for (unsigned n = 0; n < s; ++n)
|
|
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
|
|
}
|
|
|
|
void
|
|
visit(const automatop* node)
|
|
{
|
|
nmap m;
|
|
bdd finish = bddfalse;
|
|
bdd acc = bddtrue;
|
|
|
|
std::vector<formula*> v;
|
|
for (unsigned i = 0; i < node->size(); ++i)
|
|
v.push_back(const_cast<formula*>(node->nth(i)));
|
|
|
|
std::pair<int, int> vp =
|
|
recurse_state(node->get_nfa(),
|
|
node->get_nfa()->get_init_state(), v, m, acc, finish);
|
|
|
|
// Update finish_ with finish(node).
|
|
// FIXME: when node is loop, it does not make sense; hence the bddtrue.
|
|
finish_[node] = !node->get_nfa()->is_loop() ? bddtrue : finish;
|
|
|
|
bdd tmp = bddtrue;
|
|
for (nmap::iterator it = m.begin(); it != m.end(); ++it)
|
|
tmp &= bdd_apply(bdd_ithvar(it->second.first + 1),
|
|
bdd_ithvar(it->second.second + 1), bddop_biimp);
|
|
fact_.constrain_relation(bdd_apply(acc, tmp, bddop_imp));
|
|
|
|
fact_.declare_acceptance_condition(acc, node);
|
|
res_ = node->is_negated() ?
|
|
bdd_nithvar(vp.first) : bdd_ithvar(vp.first);
|
|
}
|
|
|
|
bdd
|
|
recurse(const formula* f, bool root = false)
|
|
{
|
|
eltl_trad_visitor v(fact_, root);
|
|
f->accept(v);
|
|
return v.result();
|
|
}
|
|
|
|
private:
|
|
bdd res_;
|
|
tgba_bdd_concrete_factory& fact_;
|
|
bool root_;
|
|
|
|
/// BDD associated to each automatop A representing finish(A).
|
|
typedef Sgi::hash_map<const ltl::formula*, bdd,
|
|
ltl::formula_ptr_hash> finish_map_;
|
|
|
|
finish_map_ finish_;
|
|
|
|
// Table containing the two now variables associated with each state.
|
|
// TODO: a little documentation about that.
|
|
typedef Sgi::hash_map<
|
|
const nfa::state*, std::pair<int, int>, ptr_hash<nfa::state> > nmap;
|
|
|
|
std::pair<int, int>&
|
|
recurse_state(const nfa::ptr& nfa, const nfa::state* s,
|
|
const std::vector<formula*>& v,
|
|
nmap& m, bdd& acc, bdd& finish)
|
|
{
|
|
bool is_loop = nfa->is_loop();
|
|
nmap::iterator it;
|
|
it = m.find(s);
|
|
|
|
int v1 = 0;
|
|
int v2 = 0;
|
|
if (it != m.end())
|
|
return it->second;
|
|
else
|
|
{
|
|
v1 = fact_.create_anonymous_state();
|
|
v2 = fact_.create_anonymous_state();
|
|
m[s] = std::make_pair(v1, v2);
|
|
}
|
|
|
|
bdd tmp1 = bddfalse;
|
|
bdd tmp2 = bddfalse;
|
|
bdd tmpacc = bddfalse;
|
|
for (nfa::iterator i = nfa->begin(s); i != nfa->end(s); ++i)
|
|
{
|
|
const formula* lbl = formula_tree::instanciate((*i)->lbl, v);
|
|
bdd f = recurse(lbl);
|
|
lbl->destroy();
|
|
if (nfa->is_final((*i)->dst))
|
|
{
|
|
tmp1 |= f;
|
|
tmp2 |= f;
|
|
tmpacc |= f;
|
|
finish |= bdd_ithvar(v1) & f;
|
|
}
|
|
else
|
|
{
|
|
std::pair<int, int> vp =
|
|
recurse_state(nfa, (*i)->dst, v, m, acc, finish);
|
|
tmp1 |= (f & bdd_ithvar(vp.first + 1));
|
|
tmp2 |= (f & bdd_ithvar(vp.second + 1));
|
|
if (is_loop)
|
|
tmpacc |= f;
|
|
}
|
|
}
|
|
fact_.constrain_relation(bdd_apply(bdd_ithvar(v1), tmp1, bddop_biimp));
|
|
if (is_loop)
|
|
{
|
|
acc &= bdd_ithvar(v2) | !tmpacc;
|
|
fact_.constrain_relation(
|
|
bdd_apply(bdd_ithvar(v2), tmp2, bddop_invimp));
|
|
}
|
|
else
|
|
{
|
|
acc &= bdd_nithvar(v2) | tmpacc;
|
|
fact_.constrain_relation(bdd_apply(bdd_ithvar(v2), tmp2, bddop_imp));
|
|
}
|
|
|
|
return m[s];
|
|
}
|
|
};
|
|
} // anonymous
|
|
|
|
tgba_bdd_concrete*
|
|
eltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)
|
|
{
|
|
// Normalize the formula. We want all the negations on
|
|
// the atomic propositions. We also suppress logic
|
|
// abbreviations such as <=>, =>, or XOR, since they
|
|
// would involve negations at the BDD level.
|
|
const ltl::formula* f1 = ltl::unabbreviate_logic(f);
|
|
const ltl::formula* f2 = ltl::negative_normal_form(f1);
|
|
f1->destroy();
|
|
|
|
// Traverse the formula and draft the automaton in a factory.
|
|
tgba_bdd_concrete_factory fact(dict);
|
|
eltl_trad_visitor v(fact, true);
|
|
f2->accept(v);
|
|
f2->destroy();
|
|
fact.finish();
|
|
|
|
// Finally setup the resulting automaton.
|
|
return new tgba_bdd_concrete(fact, v.result());
|
|
}
|
|
}
|