spot/src/tgbaalgos/eltl2tgba_lacim.cc
Damien Lefortier 0d6fd3225a Minor fixes to compile with GCC 3.3
* src/ltlast/automatop.cc, src/ltlast/automatop.hh: Rename nfa as
get_nfa to avoid a name clash with the `nfa' class.
* src/ltlvisit/clone.cc, src/ltlvisit/nenoform.cc,
src/ltlvisit/tostring.cc, src/tgbaalgos/eltl2tgba_lacim.cc: Use
get_nfa instead of nfa.
* src/tgba/tgbasafracomplement.cc: Don't use a
const_reverse_iterator.
2010-01-20 18:06:00 +01:00

299 lines
7.4 KiB
C++

// Copyright (C) 2008, 2009 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlast/formula_tree.hh"
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "tgba/tgbabddconcretefactory.hh"
#include <cassert>
#include "eltl2tgba_lacim.hh"
namespace spot
{
namespace
{
using namespace ltl;
/// \brief Recursively translate a formula into a BDD.
class eltl_trad_visitor : public const_visitor
{
public:
eltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
: fact_(fact), root_(root), finish_()
{
}
virtual
~eltl_trad_visitor()
{
}
bdd
result()
{
return res_;
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* node)
{
switch (node->op())
{
case unop::Not:
{
res_ = bdd_not(recurse(node->child()));
return;
}
case unop::Finish:
{
// Ensure finish_[node->child()] has been computed if
// node->child() is an automaton operator.
res_ = recurse(node->child());
finish_map_::const_iterator it = finish_.find(node->child());
if (it != finish_.end())
res_ = finish_[node->child()];
return;
}
case unop::X:
case unop::F:
case unop::G:
assert(!"unsupported operator");
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* node)
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
switch (node->op())
{
case binop::Xor:
res_ = bdd_apply(f1, f2, bddop_xor);
return;
case binop::Implies:
res_ = bdd_apply(f1, f2, bddop_imp);
return;
case binop::Equiv:
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
case binop::U:
case binop::R:
assert(!"unsupported operator");
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* node)
{
int op = -1;
bool root = false;
switch (node->op())
{
case multop::And:
op = bddop_and;
res_ = bddtrue;
// When the root formula is a conjunction it's ok to
// consider all children as root formulae. This allows the
// root-G trick to save many more variable. (See the
// translation of G.)
root = root_;
break;
case multop::Or:
op = bddop_or;
res_ = bddfalse;
break;
}
assert(op != -1);
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
}
void
visit(const automatop* node)
{
nmap m;
bdd finish = bddfalse;
bdd acc = bddtrue;
std::vector<formula*> v;
for (unsigned i = 0; i < node->size(); ++i)
v.push_back(const_cast<formula*>(node->nth(i)));
std::pair<int, int> vp =
recurse_state(node->get_nfa(),
node->get_nfa()->get_init_state(), v, m, acc, finish);
// Update finish_ with finish(node).
// FIXME: when node is loop, it does not make sense; hence the bddtrue.
finish_[node] = !node->get_nfa()->is_loop() ? bddtrue : finish;
bdd tmp = bddtrue;
for (nmap::iterator it = m.begin(); it != m.end(); ++it)
tmp &= bdd_apply(bdd_ithvar(it->second.first + 1),
bdd_ithvar(it->second.second + 1), bddop_biimp);
fact_.constrain_relation(bdd_apply(acc, tmp, bddop_imp));
fact_.declare_acceptance_condition(acc, node);
res_ = node->is_negated() ?
bdd_nithvar(vp.first) : bdd_ithvar(vp.first);
}
bdd
recurse(const formula* f, bool root = false)
{
eltl_trad_visitor v(fact_, root);
f->accept(v);
return v.result();
}
private:
bdd res_;
tgba_bdd_concrete_factory& fact_;
bool root_;
/// BDD associated to each automatop A representing finish(A).
typedef Sgi::hash_map<const ltl::formula*, bdd,
ltl::formula_ptr_hash> finish_map_;
finish_map_ finish_;
// Table containing the two now variables associated with each state.
// TODO: a little documentation about that.
typedef Sgi::hash_map<
const nfa::state*, std::pair<int, int>, ptr_hash<nfa::state> > nmap;
std::pair<int, int>&
recurse_state(const nfa::ptr& nfa, const nfa::state* s,
const std::vector<formula*>& v,
nmap& m, bdd& acc, bdd& finish)
{
bool is_loop = nfa->is_loop();
nmap::iterator it;
it = m.find(s);
int v1 = 0;
int v2 = 0;
if (it != m.end())
return it->second;
else
{
v1 = fact_.create_anonymous_state();
v2 = fact_.create_anonymous_state();
m[s] = std::make_pair(v1, v2);
}
bdd tmp1 = bddfalse;
bdd tmp2 = bddfalse;
bdd tmpacc = bddfalse;
for (nfa::iterator i = nfa->begin(s); i != nfa->end(s); ++i)
{
const formula* lbl = formula_tree::instanciate((*i)->lbl, v);
bdd f = recurse(lbl);
lbl->destroy();
if (nfa->is_final((*i)->dst))
{
tmp1 |= f;
tmp2 |= f;
tmpacc |= f;
finish |= bdd_ithvar(v1) & f;
}
else
{
std::pair<int, int> vp =
recurse_state(nfa, (*i)->dst, v, m, acc, finish);
tmp1 |= (f & bdd_ithvar(vp.first + 1));
tmp2 |= (f & bdd_ithvar(vp.second + 1));
if (is_loop)
tmpacc |= f;
}
}
fact_.constrain_relation(bdd_apply(bdd_ithvar(v1), tmp1, bddop_biimp));
if (is_loop)
{
acc &= bdd_ithvar(v2) | !tmpacc;
fact_.constrain_relation(
bdd_apply(bdd_ithvar(v2), tmp2, bddop_invimp));
}
else
{
acc &= bdd_nithvar(v2) | tmpacc;
fact_.constrain_relation(bdd_apply(bdd_ithvar(v2), tmp2, bddop_imp));
}
return m[s];
}
};
} // anonymous
tgba_bdd_concrete*
eltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)
{
// Normalize the formula. We want all the negations on
// the atomic propositions. We also suppress logic
// abbreviations such as <=>, =>, or XOR, since they
// would involve negations at the BDD level.
const ltl::formula* f1 = ltl::unabbreviate_logic(f);
const ltl::formula* f2 = ltl::negative_normal_form(f1);
f1->destroy();
// Traverse the formula and draft the automaton in a factory.
tgba_bdd_concrete_factory fact(dict);
eltl_trad_visitor v(fact, true);
f2->accept(v);
f2->destroy();
fact.finish();
// Finally setup the resulting automaton.
return new tgba_bdd_concrete(fact, v.result());
}
}