spot/src/ltlast/multop.cc
Alexandre Duret-Lutz 813c3799c0 ltl: remove is_eltl_formula()
* doc/tl/tl.tex, src/ltlast/atomic_prop.cc, src/ltlast/binop.cc,
src/ltlast/bunop.cc, src/ltlast/constant.cc, src/ltlast/formula.cc,
src/ltlast/formula.hh, src/ltlast/multop.cc, src/ltlast/unop.cc:
Remove is_eltl_formula().
* src/tests/kind.test: Adjust.
2015-06-20 15:21:31 +02:00

699 lines
16 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <cstddef>
#include <cassert>
#include <utility>
#include <algorithm>
#include <iostream>
#include "multop.hh"
#include "constant.hh"
#include "bunop.hh"
#include "visitor.hh"
namespace spot
{
namespace ltl
{
multop::multop(type op, vec* v)
: formula(MultOp), op_(op), children_(v)
{
unsigned s = v->size();
assert(s > 1);
props = (*v)[0]->get_props();
switch (op)
{
case Fusion:
is.accepting_eword = false;
case Concat:
case AndNLM:
case AndRat:
{
bool syntactic_si = is.syntactic_si && !is.boolean;
// Note: AndNLM(p1,p2) and AndRat(p1,p2) are Boolean
// formulae, but they are actually rewritten as And(p1,p2)
// by trivial identities before this constructor is called.
// So at this point, AndNLM/AndRat are always used with at
// most one Boolean argument, and the result is therefore
// NOT Boolean.
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = false;
is.eventual = false;
is.universal = false;
for (unsigned i = 1; i < s; ++i)
{
syntactic_si &= (*v)[i]->is_syntactic_stutter_invariant()
&& !(*v)[i]->is_boolean();
props &= (*v)[i]->get_props();
}
is.syntactic_si = syntactic_si;
break;
}
case And:
for (unsigned i = 1; i < s; ++i)
props &= (*v)[i]->get_props();
break;
case OrRat:
{
bool syntactic_si = is.syntactic_si && !is.boolean;
// Note: OrRat(p1,p2) is a Boolean formula, but its is
// actually rewritten as Or(p1,p2) by trivial identities
// before this constructor is called. So at this point,
// AndNLM is always used with at most one Boolean argument,
// and the result is therefore NOT Boolean.
is.boolean = false;
is.ltl_formula = false;
is.psl_formula = false;
is.eventual = false;
is.universal = false;
bool ew = (*v)[0]->accepts_eword();
for (unsigned i = 1; i < s; ++i)
{
ew |= (*v)[i]->accepts_eword();
syntactic_si &= (*v)[i]->is_syntactic_stutter_invariant()
&& !(*v)[i]->is_boolean();
props &= (*v)[i]->get_props();
}
is.accepting_eword = ew;
is.syntactic_si = syntactic_si;
break;
}
case Or:
{
bool ew = (*v)[0]->accepts_eword();
for (unsigned i = 1; i < s; ++i)
{
ew |= (*v)[i]->accepts_eword();
props &= (*v)[i]->get_props();
}
is.accepting_eword = ew;
break;
}
}
// A concatenation is an siSERE if it contains one stared
// Boolean, and the other operands are siSERE (i.e.,
// sub-formulas that verify is_syntactic_stutter_invariant() and
// !is_boolean());
if (op == Concat)
{
unsigned sb = 0; // stared Boolean formulas seen
for (unsigned i = 0; i < s; ++i)
{
if ((*v)[i]->is_syntactic_stutter_invariant()
&& !(*v)[i]->is_boolean())
continue;
if (const bunop* b = is_Star((*v)[i]))
{
sb += b->child()->is_boolean();
if (sb > 1)
break;
}
else
{
sb = 0;
break;
}
}
is.syntactic_si = sb == 1;
}
}
multop::~multop()
{
// Get this instance out of the instance map.
size_t c = instances.erase(key(op(), children_));
assert(c == 1);
(void) c; // For the NDEBUG case.
// Dereference children.
unsigned s = size();
for (unsigned n = 0; n < s; ++n)
nth(n)->destroy();
delete children_;
}
std::string
multop::dump() const
{
std::string r = "multop(";
r += op_name();
unsigned max = size();
for (unsigned n = 0; n < max; ++n)
r += ", " + nth(n)->dump();
r += ")";
return r;
}
void
multop::accept(visitor& v) const
{
v.visit(this);
}
const formula*
multop::all_but(unsigned n) const
{
unsigned s = size();
vec* v = new vec;
v->reserve(s - 1);
for (unsigned pos = 0; pos < n; ++pos)
v->push_back(nth(pos)->clone());
for (unsigned pos = n + 1; pos < s; ++pos)
v->push_back(nth(pos)->clone());
return instance(op_, v);
}
unsigned
multop::boolean_count() const
{
unsigned pos = 0;
unsigned s = size();
while (pos < s && nth(pos)->is_boolean())
++pos;
return pos;
}
const formula*
multop::boolean_operands(unsigned* width) const
{
unsigned s = boolean_count();
if (width)
*width = s;
if (!s)
return 0;
if (s == 1)
return nth(0)->clone();
vec* v = new vec(children_->begin(),
children_->begin() + s);
for (unsigned n = 0; n < s; ++n)
(*v)[n]->clone();
return instance(op_, v);
}
const char*
multop::op_name() const
{
switch (op_)
{
case And:
return "And";
case AndRat:
return "AndRat";
case AndNLM:
return "AndNLM";
case Or:
return "Or";
case OrRat:
return "OrRat";
case Concat:
return "Concat";
case Fusion:
return "Fusion";
}
SPOT_UNREACHABLE();
}
namespace
{
static void
gather_bool(multop::vec* v, multop::type op)
{
// Gather all boolean terms.
multop::vec* b = new multop::vec;
multop::vec::iterator i = v->begin();
while (i != v->end())
{
if ((*i)->is_boolean())
{
b->push_back(*i);
i = v->erase(i);
}
else
{
++i;
}
}
// - AndNLM(Exps1...,Bool1,Exps2...,Bool2,Exps3...) =
// AndNLM(And(Bool1,Bool2),Exps1...,Exps2...,Exps3...)
// - AndRat(Exps1...,Bool1,Exps2...,Bool2,Exps3...) =
// AndRat(And(Bool1,Bool2),Exps1...,Exps2...,Exps3...)
// - OrRat(Exps1...,Bool1,Exps2...,Bool2,Exps3...) =
// AndRat(Or(Bool1,Bool2),Exps1...,Exps2...,Exps3...)
if (!b->empty())
v->insert(v->begin(), multop::instance(op, b));
else
delete b;
}
}
multop::map multop::instances;
// We match equivalent formulae modulo "ACI rules"
// (i.e. associativity, commutativity and idempotence of the
// operator). For instance if `+' designates the OR operator and
// `0' is false (the neutral element for `+') , then `f+f+0' is
// equivalent to `f'.
const formula*
multop::instance(type op, vec* v)
{
// Inline children of same kind.
//
// When we construct a formula such as Multop(Op,X,Multop(Op,Y,Z))
// we will want to inline it as Multop(Op,X,Y,Z).
{
vec inlined;
vec::iterator i = v->begin();
while (i != v->end())
{
// Some simplification routines erase terms using null
// pointers that we must ignore.
if ((*i) == 0)
{
// FIXME: For commutative operators we should replace
// the pointer by the first non-null value at the end
// of the array instead of calling erase.
i = v->erase(i);
continue;
}
if (const multop* p = is_multop(*i, op))
{
unsigned ps = p->size();
for (unsigned n = 0; n < ps; ++n)
inlined.push_back(p->nth(n)->clone());
(*i)->destroy();
// FIXME: Do not use erase. See previous FIXME.
i = v->erase(i);
continue;
}
// All operators except "Concat" and "Fusion" are
// commutative, so we just keep a list of the inlined
// arguments that should later be added to the vector.
// For concat we have to keep track of the order of
// all the arguments.
if (op == Concat || op == Fusion)
inlined.push_back(*i);
++i;
}
if (op == Concat || op == Fusion)
v->swap(inlined);
else
v->insert(v->end(), inlined.begin(), inlined.end());
}
if (op != Concat && op != Fusion)
std::sort(v->begin(), v->end(), formula_ptr_less_than_bool_first());
unsigned orig_size = v->size();
const formula* neutral;
const formula* neutral2;
const formula* abs;
const formula* abs2;
const formula* weak_abs;
switch (op)
{
case And:
neutral = constant::true_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = 0;
break;
case AndRat:
neutral = bunop::one_star();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = constant::empty_word_instance();
gather_bool(v, And);
break;
case AndNLM:
neutral = constant::empty_word_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = constant::true_instance();
gather_bool(v, And);
break;
case Or:
neutral = constant::false_instance();
neutral2 = 0;
abs = constant::true_instance();
abs2 = 0;
weak_abs = 0;
break;
case OrRat:
neutral = constant::false_instance();
neutral2 = 0;
abs = bunop::one_star();
abs2 = 0;
weak_abs = 0;
gather_bool(v, Or);
break;
case Concat:
neutral = constant::empty_word_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = 0;
weak_abs = 0;
// - Concat(Exps1...,FExps2...,1[*],FExps3...,Exps4) =
// Concat(Exps1...,1[*],Exps4)
// If FExps2... and FExps3 all accept [*0].
{
vec::iterator i = v->begin();
const formula* os = bunop::one_star();
while (i != v->end())
{
while (i != v->end() && !(*i)->accepts_eword())
++i;
if (i == v->end())
break;
vec::iterator b = i;
// b is the first expressions that accepts [*0].
// let's find more, and locate the position of
// 1[*] at the same time.
bool os_seen = false;
do
{
os_seen |= (*i == os);
++i;
}
while (i != v->end() && (*i)->accepts_eword());
if (os_seen) // [b..i) is a range that contains [*].
{
// Place [*] at the start of the range, and erase
// all other formulae.
(*b)->destroy();
*b++ = os->clone();
for (vec::iterator c = b; c < i; ++c)
(*c)->destroy();
i = v->erase(b, i);
}
}
}
break;
case Fusion:
neutral = constant::true_instance();
neutral2 = 0;
abs = constant::false_instance();
abs2 = constant::empty_word_instance();
weak_abs = 0;
// Make a first pass to group adjacent Boolean formulae.
// - Fusion(Exps1...,BoolExp1...BoolExpN,Exps2,Exps3...) =
// Fusion(Exps1...,And(BoolExp1...BoolExpN),Exps2,Exps3...)
{
vec::iterator i = v->begin();
while (i != v->end())
{
if ((*i)->is_boolean())
{
vec::iterator first = i;
++i;
if (i == v->end())
break;
if (!(*i)->is_boolean())
{
++i;
continue;
}
do
++i;
while (i != v->end() && (*i)->is_boolean());
// We have at least two adjacent Boolean formulae.
// Replace the first one by the conjunction of all.
vec* b = new vec;
b->insert(b->begin(), first, i);
i = v->erase(first + 1, i);
*first = instance(And, b);
}
else
{
++i;
}
}
}
break;
default:
neutral = 0;
neutral2 = 0;
abs = 0;
abs2 = 0;
weak_abs = 0;
break;
}
// Remove duplicates (except for Concat and Fusion). We can't use
// std::unique(), because we must destroy() any formula we drop.
// Also ignore neutral elements and handle absorbent elements.
{
const formula* last = 0;
vec::iterator i = v->begin();
bool weak_abs_seen = false;
while (i != v->end())
{
if ((*i == neutral) || (*i == neutral2) || (*i == last))
{
(*i)->destroy();
i = v->erase(i);
}
else if (*i == abs || *i == abs2)
{
for (i = v->begin(); i != v->end(); ++i)
(*i)->destroy();
delete v;
return abs->clone();
}
else
{
weak_abs_seen |= (*i == weak_abs);
if (op != Concat && op != Fusion) // Don't remove duplicates
last = *i;
++i;
}
}
if (weak_abs_seen)
{
if (op == AndRat)
{
// We have a* && [*0] && c = 0
// and a* && [*0] && c* = [*0]
// So if [*0] has been seen, check if alls term
// recognize the empty word.
bool acc_eword = true;
for (i = v->begin(); i != v->end(); ++i)
{
acc_eword &= (*i)->accepts_eword();
(*i)->destroy();
}
delete v;
if (acc_eword)
return weak_abs;
else
return abs;
}
else
{
// Similarly, a* & 1 & (c;d) = c;d
// a* & 1 & c* = 1
assert(op == AndNLM);
multop::vec tmp;
for (i = v->begin(); i != v->end(); ++i)
{
if (*i == weak_abs)
continue;
if ((*i)->accepts_eword())
{
(*i)->destroy();
continue;
}
tmp.push_back(*i);
}
if (tmp.empty())
tmp.push_back(weak_abs);
v->swap(tmp);
}
}
else if (op == Concat || op == Fusion)
{
// Perform an extra loop to merge starable items.
// f;f -> f[*2]
// f;f[*i..j] -> f[*i+1..j+1]
// f[*i..j];f -> f[*i+1..j+1]
// f[*i..j];f[*k..l] -> f[*i+k..j+l]
// same for FStar:
// f:f -> f[:*2]
// f:f[*i..j] -> f[:*i+1..j+1]
// f[:*i..j];f -> f[:*i+1..j+1]
// f[:*i..j];f[:*k..l] -> f[:*i+k..j+l]
bunop::type bop = op == Concat ? bunop::Star : bunop::FStar;
i = v->begin();
while (i != v->end())
{
vec::iterator fpos = i;
const formula* f;
unsigned min;
unsigned max;
bool changed = false;
if (const bunop* is = is_bunop(*i, bop))
{
f = is->child();
min = is->min();
max = is->max();
}
else
{
f = *i;
min = max = 1;
}
++i;
while (i != v->end())
{
const formula* f2;
unsigned min2;
unsigned max2;
if (const bunop* is = is_bunop(*i, bop))
{
f2 = is->child();
if (f2 != f)
break;
min2 = is->min();
max2 = is->max();
}
else
{
f2 = *i;
if (f2 != f)
break;
min2 = max2 = 1;
}
if (min2 == bunop::unbounded)
min = bunop::unbounded;
else if (min != bunop::unbounded)
min += min2;
if (max2 == bunop::unbounded)
max = bunop::unbounded;
else if (max != bunop::unbounded)
max += max2;
(*i)->destroy();
i = v->erase(i);
changed = true;
}
if (changed)
{
const formula* newfs =
bunop::instance(bop, f->clone(), min, max);
(*fpos)->destroy();
*fpos = newfs;
}
}
}
}
vec::size_type s = v->size();
if (s == 0)
{
delete v;
assert(neutral != 0);
return neutral->clone();
}
else if (s == 1)
{
// Simply replace Multop(Op,X) by X.
// Except we should never reduce the
// arguments of a Fusion operator to
// a list with a single formula that
// accepts [*0].
const formula* res = (*v)[0];
if (op != Fusion || orig_size == 1
|| !res->accepts_eword())
{
delete v;
return res;
}
// If Fusion(f, ...) reduce to Fusion(f), emit Fusion(1,f).
// to ensure that [*0] is not accepted.
v->insert(v->begin(), constant::true_instance());
}
const formula* res;
// Insert the key with the dummy nullptr just
// to check if p already exists.
auto ires = instances.emplace(key(op, v), nullptr);
if (!ires.second)
{
// The instance did already exists. Free v.
for (auto f: *v)
f->destroy();
delete v;
res = ires.first->second->clone();
}
else
{
// The instance did not already exist.
res = ires.first->second = new multop(op, v);
}
return res;
}
const formula*
multop::instance(type op, const formula* first, const formula* second)
{
vec* v = new vec;
v->push_back(first);
v->push_back(second);
return instance(op, v);
}
unsigned
multop::instance_count()
{
return instances.size();
}
std::ostream&
multop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = "
<< 1 + i.second->refs_ << " * "
<< i.second->dump()
<< '\n';
return os;
}
}
}