* src/ltltest/reduccmp.test: Reorder the test added by the previous patches. Some are not supposed to be reduced by reductaustr.
170 lines
5.2 KiB
Bash
Executable file
170 lines
5.2 KiB
Bash
Executable file
#! /bin/sh
|
|
# Copyright (C) 2009, 2010 Laboratoire de Recherche et Développement
|
|
# de l'Epita (LRDE).
|
|
# Copyright (C) 2004, 2006 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
# département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
# et Marie Curie.
|
|
#
|
|
# This file is part of Spot, a model checking library.
|
|
#
|
|
# Spot is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
# License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with Spot; see the file COPYING. If not, write to the Free
|
|
# Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
# 02111-1307, USA.
|
|
|
|
|
|
# Check LTL reductions
|
|
|
|
. ./defs || exit 1
|
|
|
|
for x in ../reduccmp ../reductaustr; do
|
|
|
|
# No reduction
|
|
run 0 $x 'a U b' 'a U b'
|
|
run 0 $x 'a R b' 'a R b'
|
|
run 0 $x 'a & b' 'a & b'
|
|
run 0 $x 'a | b' 'a | b'
|
|
run 0 $x 'a & (a U b)' 'a & (a U b)'
|
|
run 0 $x 'a | (a U b)' 'a | (a U b)'
|
|
|
|
# Syntactic reduction
|
|
run 0 $x 'a & (!b R !a)' 'false'
|
|
run 0 $x '(!b R !a) & a' 'false'
|
|
run 0 $x 'a & (!b R !a) & c' 'false'
|
|
run 0 $x 'c & (!b R !a) & a' 'false'
|
|
|
|
run 0 $x 'a & (!b M !a)' 'false'
|
|
run 0 $x '(!b M !a) & a' 'false'
|
|
run 0 $x 'a & (!b M !a) & c' 'false'
|
|
run 0 $x 'c & (!b M !a) & a' 'false'
|
|
|
|
run 0 $x 'a & (b U a)' 'a'
|
|
run 0 $x '(b U a) & a' 'a'
|
|
run 0 $x 'a | (b U a)' '(b U a)'
|
|
run 0 $x '(b U a) | a' '(b U a)'
|
|
run 0 $x 'a U (b U a)' '(b U a)'
|
|
|
|
run 0 $x 'a & (b W a)' 'a'
|
|
run 0 $x '(b W a) & a' 'a'
|
|
run 0 $x 'a | (b W a)' '(b W a)'
|
|
run 0 $x '(b W a) | a' '(b W a)'
|
|
run 0 $x 'a W (b W a)' '(b W a)'
|
|
|
|
run 0 $x 'a & (b U a) & a' 'a'
|
|
run 0 $x 'a & (b U a) & a' 'a'
|
|
run 0 $x 'a | (b U a) | a' '(b U a)'
|
|
run 0 $x 'a | (b U a) | a' '(b U a)'
|
|
run 0 $x 'a U (b U a)' '(b U a)'
|
|
|
|
# Basics reduction
|
|
run 0 $x 'X(true)' 'true'
|
|
run 0 $x 'X(false)' 'false'
|
|
run 0 $x 'F(true)' 'true'
|
|
run 0 $x 'F(false)' 'false'
|
|
|
|
run 0 $x 'XGF(f)' 'GF(f)'
|
|
|
|
case $x in
|
|
*tau*);;
|
|
*)
|
|
run 0 $x 'G(true)' 'true'
|
|
run 0 $x 'G(false)' 'false'
|
|
|
|
run 0 $x 'a M 1' 'Fa'
|
|
run 0 $x 'a W 0' 'Ga'
|
|
run 0 $x '1 U a' 'Fa'
|
|
run 0 $x '0 R a' 'Ga'
|
|
|
|
run 0 $x 'G(a R b)' 'G(b)'
|
|
|
|
run 0 $x 'FX(a)' 'XF(a)'
|
|
run 0 $x 'GX(a)' 'XG(a)'
|
|
|
|
run 0 $x 'X(a) U X(b)' 'X(a U b)'
|
|
run 0 $x 'X(a) R X(b)' 'X(a R b)'
|
|
run 0 $x 'Xa & Xb' 'X(a & b)'
|
|
run 0 $x 'Xa | Xb' 'X(a | b)'
|
|
|
|
run 0 $x '(a U b) & (c U b)' '(a & c) U b'
|
|
run 0 $x '(a R b) & (a R c)' 'a R (b & c)'
|
|
run 0 $x '(a U b) | (a U c)' 'a U (b | c)'
|
|
run 0 $x '(a R b) | (c R b)' '(a | c) R b'
|
|
|
|
run 0 $x 'X(a & GFb)' 'Xa & GFb'
|
|
run 0 $x 'X(a | GFb)' 'Xa | GFb'
|
|
# The following is not reduced to F(a) & GFb. because
|
|
# (1) is does not help the translate the formula into a
|
|
# smaller automaton, and ...
|
|
run 0 $x 'F(a & GFb)' 'F(a & GFb)'
|
|
# (2) ... it would hinder this useful reduction (that helps to
|
|
# produce a smaller automaton)
|
|
run 0 $x 'F(f1 & GF(f2)) | F(a & GF(b))' 'F((f1&GFf2)|(a&GFb))'
|
|
run 0 $x 'G(a | GFb)' 'Ga | GFb'
|
|
|
|
run 0 $x 'X(a & GFb & c)' 'X(a & c) & GFb'
|
|
run 0 $x 'X(a | GFb | c)' 'X(a | c) | GFb'
|
|
# The following is not reduced to F(a & c) & GF(b) for the same
|
|
# reason as above.
|
|
run 0 $x 'F(a & GFb & c)' 'F(a & GFb & c)'
|
|
run 0 $x 'G(a | GFb | c)' 'G(a | c) | GFb'
|
|
|
|
run 0 $x 'Gb W a' 'Gb|a'
|
|
run 0 $x 'Fb M Fa' 'Fa & Fb'
|
|
|
|
run 0 $x 'a U (b | G(a) | c)' 'a W (b | c)'
|
|
run 0 $x 'a U (G(a))' 'Ga'
|
|
run 0 $x '(a U b) | (a W c)' 'a W (b | c)'
|
|
run 0 $x '(a U b) | Ga' 'a W b'
|
|
|
|
run 0 $x 'a R (b & F(a) & c)' 'a M (b & c)'
|
|
run 0 $x 'a R (F(a))' 'Fa'
|
|
run 0 $x '(a R b) & (a M c)' 'a M (b & c)'
|
|
run 0 $x '(a R b) & Fa' 'a M b'
|
|
|
|
run 0 $x '(a U b) & (c W b)' '(a & c) U b'
|
|
run 0 $x '(a W b) & (c W b)' '(a & c) W b'
|
|
run 0 $x '(a R b) | (c M b)' '(a | c) R b'
|
|
run 0 $x '(a M b) | (c M b)' '(a | c) M b'
|
|
|
|
run 0 $x '(a R b) | Gb' 'a R b'
|
|
run 0 $x '(a M b) | Gb' 'a R b'
|
|
run 0 $x '(a U b) & Fb' 'a U b'
|
|
run 0 $x '(a W b) & Fb' 'a U b'
|
|
run 0 $x '(a M b) | Gb | (c M b)' '(a | c) R b'
|
|
|
|
run 0 $x 'GFGa' 'FGa'
|
|
run 0 $x 'b R Ga' 'Ga'
|
|
run 0 $x 'b R FGa' 'FGa'
|
|
|
|
# Syntactic implication
|
|
run 0 $x '(a & b) R (a R c)' '(a & b)R c'
|
|
run 0 $x 'a R ((a & b) R c)' '(a & b)R c'
|
|
run 0 $x 'a R ((a & b) M c)' '(a & b)M c'
|
|
run 0 $x 'a M ((a & b) M c)' '(a & b)M c'
|
|
run 0 $x '(a & b) M (a R c)' '(a & b)M c'
|
|
run 0 $x '(a & b) M (a M c)' '(a & b)M c'
|
|
;;
|
|
esac
|
|
|
|
run 0 $x 'a R (b W G(c))' 'a R (b W G(c))' #not reduced
|
|
|
|
run 0 $x 'a M ((a&b) R c)' 'a M ((a&b) R c)' #not reduced.
|
|
run 0 $x '(a&b) W (a U c)' '(a&b) W (a U c)' #not reduced.
|
|
|
|
# Eventuality and universality class reduction
|
|
run 0 $x 'FFa' 'Fa'
|
|
run 0 $x 'FGFa' 'GFa'
|
|
run 0 $x 'b U Fa' 'Fa'
|
|
run 0 $x 'b U GFa' 'GFa'
|
|
run 0 $x 'Ga' 'Ga'
|
|
done
|