* src/ltlvisit/basicreduce.cc: Perform the following reductions: (a R b) | Gb = a R b (a M b) | Gb = a R b (a U b) & Fb = a U b (a W b) & Fb = a U b * src/ltltest/reduccmp.test: Test them.
870 lines
20 KiB
C++
870 lines
20 KiB
C++
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
|
|
// Développement de l'Epita (LRDE).
|
|
// Copyright (C) 2004, 2007 Laboratoire d'Informatique de
|
|
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
|
// Université Pierre et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "basicreduce.hh"
|
|
#include "ltlast/visitor.hh"
|
|
#include "ltlast/allnodes.hh"
|
|
#include <cassert>
|
|
|
|
namespace spot
|
|
{
|
|
namespace ltl
|
|
{
|
|
bool
|
|
is_GF(const formula* f)
|
|
{
|
|
const unop* op = dynamic_cast<const unop*>(f);
|
|
if (op && op->op() == unop::G)
|
|
{
|
|
const unop* opchild = dynamic_cast<const unop*>(op->child());
|
|
if (opchild && opchild->op() == unop::F)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
is_FG(const formula* f)
|
|
{
|
|
const unop* op = dynamic_cast<const unop*>(f);
|
|
if (op && op->op() == unop::F)
|
|
{
|
|
const unop* opchild = dynamic_cast<const unop*>(op->child());
|
|
if (opchild && opchild->op() == unop::G)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
class basic_reduce_visitor: public visitor
|
|
{
|
|
public:
|
|
|
|
basic_reduce_visitor(){}
|
|
|
|
virtual ~basic_reduce_visitor(){}
|
|
|
|
formula*
|
|
result() const
|
|
{
|
|
return result_;
|
|
}
|
|
|
|
void
|
|
visit(atomic_prop* ap)
|
|
{
|
|
formula* f = ap->clone();
|
|
result_ = f;
|
|
}
|
|
|
|
void
|
|
visit(constant* c)
|
|
{
|
|
result_ = c;
|
|
}
|
|
|
|
formula*
|
|
param_case(multop* mo, unop::type op, multop::type op_child)
|
|
{
|
|
formula* result;
|
|
multop::vec* res1 = new multop::vec;
|
|
multop::vec* resGF = new multop::vec;
|
|
unsigned mos = mo->size();
|
|
for (unsigned i = 0; i < mos; ++i)
|
|
if (is_GF(mo->nth(i)))
|
|
resGF->push_back(mo->nth(i)->clone());
|
|
else
|
|
res1->push_back(mo->nth(i)->clone());
|
|
mo->destroy();
|
|
multop::vec* res3 = new multop::vec;
|
|
if (!res1->empty())
|
|
res3->push_back(unop::instance(op,
|
|
multop::instance(op_child, res1)));
|
|
else
|
|
delete res1;
|
|
if (!resGF->empty())
|
|
res3->push_back(multop::instance(op_child, resGF));
|
|
else
|
|
delete resGF;
|
|
result = multop::instance(op_child, res3);
|
|
return result;
|
|
}
|
|
|
|
void
|
|
visit(unop* uo)
|
|
{
|
|
formula* f = uo->child();
|
|
result_ = basic_reduce(f);
|
|
multop* mo = 0;
|
|
unop* u = 0;
|
|
binop* bo = 0;
|
|
switch (uo->op())
|
|
{
|
|
case unop::Not:
|
|
result_ = unop::instance(unop::Not, result_);
|
|
return;
|
|
|
|
case unop::X:
|
|
// X(true) = true
|
|
// X(false) = false
|
|
if (dynamic_cast<constant*>(result_))
|
|
return;
|
|
|
|
// XGF(f) = GF(f)
|
|
if (is_GF(result_))
|
|
return;
|
|
|
|
// X(f1 & GF(f2)) = X(f1) & GF(F2)
|
|
// X(f1 | GF(f2)) = X(f1) | GF(F2)
|
|
mo = dynamic_cast<multop*>(result_);
|
|
if (mo)
|
|
{
|
|
result_ = param_case(mo, unop::X, mo->op());
|
|
return;
|
|
}
|
|
|
|
result_ = unop::instance(unop::X, result_);
|
|
return;
|
|
|
|
case unop::F:
|
|
// F(true) = true
|
|
// F(false) = false
|
|
if (dynamic_cast<constant*>(result_))
|
|
return;
|
|
|
|
// FX(a) = XF(a)
|
|
u = dynamic_cast<unop*>(result_);
|
|
if (u && u->op() == unop::X)
|
|
{
|
|
formula* res =
|
|
unop::instance(unop::X,
|
|
unop::instance(unop::F,
|
|
basic_reduce(u->child())));
|
|
u->destroy();
|
|
// FXX(a) = XXF(a) ...
|
|
result_ = basic_reduce(res);
|
|
res->destroy();
|
|
return;
|
|
}
|
|
|
|
#if 0
|
|
// F(f1 & GF(f2)) = F(f1) & GF(F2)
|
|
//
|
|
// As is, these two formulae are translated into
|
|
// equivalent Büchi automata so the rewriting is
|
|
// useless.
|
|
//
|
|
// However when taken in a larger formulae such as F(f1
|
|
// & GF(f2)) | F(a & GF(b)), this rewriting used to
|
|
// produce (F(f1) & GF(f2)) | (F(a) & GF(b)), missing
|
|
// the opportunity to apply the F(E1)|F(E2) = F(E1|E2)
|
|
// rule which really helps the translation. F((f1 &
|
|
// GF(f2)) | (a & GF(b))) is indeed easier to translate.
|
|
//
|
|
// So let's not consider this rewriting rule.
|
|
mo = dynamic_cast<multop*>(result_);
|
|
if (mo && mo->op() == multop::And)
|
|
{
|
|
result_ = param_case(mo, unop::F, multop::And);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
result_ = unop::instance(unop::F, result_);
|
|
return;
|
|
|
|
case unop::G:
|
|
// G(true) = true
|
|
// G(false) = false
|
|
if (dynamic_cast<constant*>(result_))
|
|
return;
|
|
|
|
// G(a R b) = G(b)
|
|
bo = dynamic_cast<binop*>(result_);
|
|
if (bo && bo->op() == binop::R)
|
|
{
|
|
result_ = unop::instance(unop::G,
|
|
basic_reduce(bo->second()));
|
|
bo->destroy();
|
|
return;
|
|
}
|
|
|
|
// GX(a) = XG(a)
|
|
u = dynamic_cast<unop*>(result_);
|
|
if (u && u->op() == unop::X)
|
|
{
|
|
formula* res =
|
|
unop::instance(unop::X,
|
|
unop::instance(unop::G,
|
|
basic_reduce(u->child())));
|
|
u->destroy();
|
|
// GXX(a) = XXG(a) ...
|
|
// GXF(a) = XGF(a) = GF(a) ...
|
|
result_ = basic_reduce(res);
|
|
res->destroy();
|
|
return;
|
|
}
|
|
|
|
// G(f1 | GF(f2)) = G(f1) | GF(F2)
|
|
mo = dynamic_cast<multop*>(result_);
|
|
if (mo && mo->op() == multop::Or)
|
|
{
|
|
result_ = param_case(mo, unop::G, multop::Or);
|
|
return;
|
|
}
|
|
|
|
result_ = unop::instance(unop::G, result_);
|
|
return;
|
|
|
|
case unop::Finish:
|
|
result_ = unop::instance(unop::Finish, result_);
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(binop* bo)
|
|
{
|
|
formula* f1 = bo->first();
|
|
formula* f2 = bo->second();
|
|
binop::type op = bo->op();
|
|
switch (op)
|
|
{
|
|
case binop::Xor:
|
|
case binop::Equiv:
|
|
case binop::Implies:
|
|
result_ = binop::instance(bo->op(),
|
|
basic_reduce(f1),
|
|
basic_reduce(f2));
|
|
return;
|
|
case binop::W:
|
|
case binop::M:
|
|
case binop::U:
|
|
case binop::R:
|
|
{
|
|
f1 = basic_reduce(f1);
|
|
f2 = basic_reduce(f2);
|
|
|
|
// a W false = Ga
|
|
if (op == binop::W && f2 == constant::false_instance())
|
|
{
|
|
result_ = unop::instance(unop::G, f1);
|
|
return;
|
|
}
|
|
// a M true = Fa
|
|
if (op == binop::M && f2 == constant::true_instance())
|
|
{
|
|
result_ = unop::instance(unop::F, f1);
|
|
return;
|
|
}
|
|
// a U false = false
|
|
// a U true = true
|
|
// a R false = false
|
|
// a R true = true
|
|
// a W true = true
|
|
// a M false = false
|
|
if (dynamic_cast<constant*>(f2))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
|
|
// X(a) U X(b) = X(a U b)
|
|
// X(a) R X(b) = X(a R b)
|
|
// X(a) W X(b) = X(a W b)
|
|
// X(a) M X(b) = X(a M b)
|
|
unop* fu1 = dynamic_cast<unop*>(f1);
|
|
unop* fu2 = dynamic_cast<unop*>(f2);
|
|
if (fu1 && fu2
|
|
&& fu1->op() == unop::X
|
|
&& fu2->op() == unop::X)
|
|
{
|
|
formula* ftmp = binop::instance(op,
|
|
basic_reduce(fu1->child()),
|
|
basic_reduce(fu2->child()));
|
|
result_ = unop::instance(unop::X, basic_reduce(ftmp));
|
|
f1->destroy();
|
|
f2->destroy();
|
|
ftmp->destroy();
|
|
return;
|
|
}
|
|
|
|
if (op == binop::U || op == binop::W)
|
|
{
|
|
// a U Ga = Ga
|
|
// a W Ga = Ga
|
|
if (fu2 && fu2->op() == unop::G && fu2->child() == f1)
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
|
|
// a U (b | G(a)) = a W b
|
|
// a W (b | G(a)) = a W b
|
|
multop* fm2 = dynamic_cast<multop*>(f2);
|
|
if (fm2 && fm2->op() == multop::Or)
|
|
{
|
|
int s = fm2->size();
|
|
for (int i = 0; i < s; ++i)
|
|
{
|
|
unop* c = dynamic_cast<unop*>(fm2->nth(i));
|
|
if (c && c->op() == unop::G && c->child() == f1)
|
|
{
|
|
multop::vec* v = new multop::vec;
|
|
v->reserve(s - 1);
|
|
int j;
|
|
for (j = 0; j < i; ++j)
|
|
v->push_back(fm2->nth(j)->clone());
|
|
// skip j=i
|
|
for (++j; j < s; ++j)
|
|
v->push_back(fm2->nth(j)->clone());
|
|
result_ =
|
|
binop::instance(binop::W, f1,
|
|
multop::instance(multop::Or,
|
|
v));
|
|
f2->destroy();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (op == binop::M || op == binop::R)
|
|
{
|
|
// a R Fa = Fa
|
|
// a M Fa = Fa
|
|
if (fu2 && fu2->op() == unop::F && fu2->child() == f1)
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
|
|
// a R (b & F(a)) = a M b
|
|
// a M (b & F(a)) = a M b
|
|
multop* fm2 = dynamic_cast<multop*>(f2);
|
|
if (fm2 && fm2->op() == multop::And)
|
|
{
|
|
int s = fm2->size();
|
|
for (int i = 0; i < s; ++i)
|
|
{
|
|
unop* c = dynamic_cast<unop*>(fm2->nth(i));
|
|
if (c && c->op() == unop::F && c->child() == f1)
|
|
{
|
|
multop::vec* v = new multop::vec;
|
|
v->reserve(s - 1);
|
|
int j;
|
|
for (j = 0; j < i; ++j)
|
|
v->push_back(fm2->nth(j)->clone());
|
|
// skip j=i
|
|
for (++j; j < s; ++j)
|
|
v->push_back(fm2->nth(j)->clone());
|
|
result_ =
|
|
binop::instance(binop::M, f1,
|
|
multop::instance(multop::And,
|
|
v));
|
|
f2->destroy();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
result_ = binop::instance(op, f1, f2);
|
|
return;
|
|
}
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(automatop*)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(multop* mo)
|
|
{
|
|
multop::type op = mo->op();
|
|
unsigned mos = mo->size();
|
|
multop::vec* res = new multop::vec;
|
|
|
|
multop::vec* tmpX = new multop::vec;
|
|
multop::vec* tmpU = new multop::vec;
|
|
multop::vec* tmpR = new multop::vec;
|
|
multop::vec* tmpFG = new multop::vec;
|
|
multop::vec* tmpF = new multop::vec;
|
|
multop::vec* tmpGF = new multop::vec;
|
|
multop::vec* tmpG = new multop::vec;
|
|
|
|
multop::vec* tmpOther = new multop::vec;
|
|
|
|
for (unsigned i = 0; i < mos; ++i)
|
|
res->push_back(basic_reduce(mo->nth(i)));
|
|
|
|
switch (op)
|
|
{
|
|
case multop::And:
|
|
|
|
for (multop::vec::iterator i = res->begin(); i != res->end(); i++)
|
|
{
|
|
// An iteration of the loop may zero some later elements
|
|
// of the vector to mark them as redundant. Skip them.
|
|
if (!*i)
|
|
continue;
|
|
unop* uo = dynamic_cast<unop*>(*i);
|
|
binop* bo = dynamic_cast<binop*>(*i);
|
|
if (uo)
|
|
{
|
|
if (uo->op() == unop::X)
|
|
{
|
|
// Xa & Xb = X(a & b)
|
|
tmpX->push_back(uo->child()->clone());
|
|
}
|
|
else if (is_FG(*i))
|
|
{
|
|
// FG(a) & FG(b) = FG(a & b)
|
|
unop* uo2 = dynamic_cast<unop*>(uo->child());
|
|
tmpFG->push_back(uo2->child()->clone());
|
|
}
|
|
else if (uo->op() == unop::G)
|
|
{
|
|
// G(a) & G(b) = G(a & b)
|
|
tmpG->push_back(uo->child()->clone());
|
|
}
|
|
else if (uo->op() == unop::F)
|
|
{
|
|
// F(a) & (a R b) = a M b
|
|
// F(a) & (a M b) = a M b
|
|
// F(a) & (b W a) = b U a
|
|
// F(a) & (b U a) = b U a
|
|
formula* a = uo->child();
|
|
bool rewritten = false;
|
|
for (multop::vec::iterator j = i;
|
|
j != res->end(); ++j)
|
|
{
|
|
if (!*j)
|
|
continue;
|
|
binop* b = dynamic_cast<binop*>(*j);
|
|
if (b && (b->op() == binop::R
|
|
|| b->op() == binop::M)
|
|
&& b->first() == a)
|
|
{
|
|
binop* r =
|
|
binop::instance(binop::M,
|
|
a->clone(),
|
|
b->second()->clone());
|
|
tmpOther->push_back(r);
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
rewritten = true;
|
|
}
|
|
else if (b && (b->op() == binop::W
|
|
|| b->op() == binop::U)
|
|
&& b->second() == a)
|
|
{
|
|
binop* r =
|
|
binop::instance(binop::U,
|
|
b->first()->clone(),
|
|
a->clone());
|
|
tmpOther->push_back(r);
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
rewritten = true;
|
|
}
|
|
}
|
|
if (!rewritten)
|
|
tmpOther->push_back(uo->clone());
|
|
}
|
|
else
|
|
{
|
|
tmpOther->push_back((*i)->clone());
|
|
}
|
|
}
|
|
else if (bo)
|
|
{
|
|
if (bo->op() == binop::U || bo->op() == binop::W)
|
|
{
|
|
// (a U b) & (c U b) = (a & c) U b
|
|
// (a U b) & (c W b) = (a & c) U b
|
|
// (a W b) & (c W b) = (a & c) W b
|
|
bool weak = true;
|
|
formula* ftmp = dynamic_cast<binop*>(*i)->second();
|
|
multop::vec* right = new multop::vec;
|
|
for (multop::vec::iterator j = i; j != res->end();
|
|
j++)
|
|
{
|
|
if (!*j)
|
|
continue;
|
|
// (a U b) & Fb = a U b.
|
|
// (a W b) & Fb = a U b.
|
|
unop* uo2 = dynamic_cast<unop*>(*j);
|
|
if (uo2 && uo2->op() == unop::F
|
|
&& uo2->child() == ftmp)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
weak = false;
|
|
}
|
|
binop* bo2 = dynamic_cast<binop*>(*j);
|
|
if (bo2 && (bo2->op() == binop::U
|
|
|| bo2->op() == binop::W)
|
|
&& ftmp == bo2->second())
|
|
{
|
|
if (bo2->op() == binop::U)
|
|
weak = false;
|
|
right->push_back(bo2->first()->clone());
|
|
if (j != i)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
}
|
|
}
|
|
}
|
|
tmpU
|
|
->push_back(binop::instance(weak ?
|
|
binop::W : binop::U,
|
|
multop::
|
|
instance(multop::
|
|
And, right),
|
|
ftmp->clone()));
|
|
}
|
|
else if (bo->op() == binop::R || bo->op() == binop::M)
|
|
{
|
|
// (a R b) & (a R c) = a R (b & c)
|
|
// (a R b) & (a M c) = a M (b & c)
|
|
bool weak = true;
|
|
formula* ftmp = dynamic_cast<binop*>(*i)->first();
|
|
multop::vec* right = new multop::vec;
|
|
for (multop::vec::iterator j = i; j != res->end();
|
|
j++)
|
|
{
|
|
if (!*j)
|
|
continue;
|
|
// (a R b) & Fa = a M b.
|
|
// (a M b) & Fa = a M b.
|
|
unop* uo2 = dynamic_cast<unop*>(*j);
|
|
if (uo2 && uo2->op() == unop::F
|
|
&& uo2->child() == ftmp)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
weak = false;
|
|
}
|
|
binop* bo2 = dynamic_cast<binop*>(*j);
|
|
if (bo2 && (bo2->op() == binop::R
|
|
|| bo2->op() == binop::M)
|
|
&& ftmp == bo2->first())
|
|
{
|
|
if (bo2->op() == binop::M)
|
|
weak = false;
|
|
right->push_back(bo2->second()->clone());
|
|
if (j != i)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
}
|
|
}
|
|
}
|
|
tmpR
|
|
->push_back(binop::instance(weak ?
|
|
binop::R : binop::M,
|
|
ftmp->clone(),
|
|
multop::
|
|
instance(multop::And,
|
|
right)));
|
|
}
|
|
else
|
|
{
|
|
tmpOther->push_back((*i)->clone());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmpOther->push_back((*i)->clone());
|
|
}
|
|
(*i)->destroy();
|
|
}
|
|
break;
|
|
|
|
case multop::Or:
|
|
|
|
for (multop::vec::iterator i = res->begin(); i != res->end(); i++)
|
|
{
|
|
if (!*i)
|
|
continue;
|
|
unop* uo = dynamic_cast<unop*>(*i);
|
|
binop* bo = dynamic_cast<binop*>(*i);
|
|
if (uo)
|
|
{
|
|
if (uo->op() == unop::X)
|
|
{
|
|
// Xa | Xb = X(a | b)
|
|
tmpX->push_back(uo->child()->clone());
|
|
}
|
|
else if (is_GF(*i))
|
|
{
|
|
// GF(a) | GF(b) = GF(a | b)
|
|
unop* uo2 = dynamic_cast<unop*>(uo->child());
|
|
tmpGF->push_back(uo2->child()->clone());
|
|
}
|
|
else if (uo->op() == unop::F)
|
|
{
|
|
// F(a) | F(b) = F(a | b)
|
|
tmpF->push_back(uo->child()->clone());
|
|
}
|
|
else if (uo->op() == unop::G)
|
|
{
|
|
// G(a) | (a U b) = a W b
|
|
// G(a) | (a W b) = a W b
|
|
formula* a = uo->child();
|
|
bool rewritten = false;
|
|
for (multop::vec::iterator j = i;
|
|
j != res->end(); ++j)
|
|
{
|
|
if (!*j)
|
|
continue;
|
|
binop* b = dynamic_cast<binop*>(*j);
|
|
if (b && (b->op() == binop::U
|
|
|| b->op() == binop::W)
|
|
&& b->first() == a)
|
|
{
|
|
binop* r =
|
|
binop::instance(binop::W,
|
|
a->clone(),
|
|
b->second()->clone());
|
|
tmpOther->push_back(r);
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
rewritten = true;
|
|
}
|
|
}
|
|
if (!rewritten)
|
|
tmpOther->push_back(uo->clone());
|
|
}
|
|
else
|
|
{
|
|
tmpOther->push_back((*i)->clone());
|
|
}
|
|
}
|
|
else if (bo)
|
|
{
|
|
if (bo->op() == binop::U || bo->op() == binop::W)
|
|
{
|
|
// (a U b) | (a U c) = a U (b | c)
|
|
// (a W b) | (a U c) = a W (b | c)
|
|
bool weak = false;
|
|
formula* ftmp = bo->first();
|
|
multop::vec* right = new multop::vec;
|
|
for (multop::vec::iterator j = i; j != res->end();
|
|
j++)
|
|
{
|
|
if (!*j)
|
|
continue;
|
|
// (a U b) | Ga = a W b.
|
|
// (a W b) | Ga = a W b.
|
|
unop* uo2 = dynamic_cast<unop*>(*j);
|
|
if (uo2 && uo2->op() == unop::G
|
|
&& uo2->child() == ftmp)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
weak = true;
|
|
}
|
|
binop* bo2 = dynamic_cast<binop*>(*j);
|
|
if (bo2 && (bo2->op() == binop::U ||
|
|
bo2->op() == binop::W)
|
|
&& ftmp == bo2->first())
|
|
{
|
|
if (bo2->op() == binop::W)
|
|
weak = true;
|
|
right->push_back(bo2->second()->clone());
|
|
if (j != i)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
}
|
|
}
|
|
}
|
|
tmpU->push_back(binop::instance(weak ?
|
|
binop::W : binop::U,
|
|
ftmp->clone(),
|
|
multop::
|
|
instance(multop::Or,
|
|
right)));
|
|
}
|
|
else if (bo->op() == binop::R || bo->op() == binop::M)
|
|
{
|
|
// (a R b) | (c R b) = (a | c) R b
|
|
// (a R b) | (c M b) = (a | c) R b
|
|
// (a M b) | (c M b) = (a | c) M b
|
|
bool weak = false;
|
|
formula* ftmp = dynamic_cast<binop*>(*i)->second();
|
|
multop::vec* right = new multop::vec;
|
|
for (multop::vec::iterator j = i; j != res->end();
|
|
j++)
|
|
{
|
|
if (!*j)
|
|
continue;
|
|
// (a R b) | Gb = a R b.
|
|
// (a M b) | Gb = a R b.
|
|
unop* uo2 = dynamic_cast<unop*>(*j);
|
|
if (uo2 && uo2->op() == unop::G
|
|
&& uo2->child() == ftmp)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
weak = true;
|
|
}
|
|
binop* bo2 = dynamic_cast<binop*>(*j);
|
|
if (bo2 && (bo2->op() == binop::R
|
|
|| bo2->op() == binop::M)
|
|
&& ftmp == bo2->second())
|
|
{
|
|
if (bo2->op() == binop::R)
|
|
weak = true;
|
|
right->push_back(bo2->first()->clone());
|
|
if (j != i)
|
|
{
|
|
(*j)->destroy();
|
|
*j = 0;
|
|
}
|
|
}
|
|
}
|
|
tmpR
|
|
->push_back(binop::instance(weak ?
|
|
binop::R : binop::M,
|
|
multop::
|
|
instance(multop::Or,
|
|
right),
|
|
ftmp->clone()));
|
|
}
|
|
else
|
|
{
|
|
tmpOther->push_back((*i)->clone());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmpOther->push_back((*i)->clone());
|
|
}
|
|
(*i)->destroy();
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
res->clear();
|
|
delete res;
|
|
|
|
|
|
if (tmpX && !tmpX->empty())
|
|
tmpOther->push_back(unop::instance(unop::X,
|
|
multop::instance(mo->op(),
|
|
tmpX)));
|
|
else
|
|
delete tmpX;
|
|
|
|
if (!tmpF->empty())
|
|
tmpOther->push_back(unop::instance(unop::F,
|
|
multop::instance(mo->op(),
|
|
tmpF)));
|
|
else
|
|
delete tmpF;
|
|
|
|
if (!tmpG->empty())
|
|
tmpOther->push_back(unop::instance(unop::G,
|
|
multop::instance(mo->op(),
|
|
tmpG)));
|
|
else
|
|
delete tmpG;
|
|
|
|
if (!tmpU->empty())
|
|
tmpOther->push_back(multop::instance(mo->op(), tmpU));
|
|
else
|
|
delete tmpU;
|
|
|
|
if (!tmpR->empty())
|
|
tmpOther->push_back(multop::instance(mo->op(), tmpR));
|
|
else
|
|
delete tmpR;
|
|
|
|
if (!tmpGF->empty())
|
|
{
|
|
formula* ftmp
|
|
= unop::instance(unop::G,
|
|
unop::instance(unop::F,
|
|
multop::instance(mo->op(),
|
|
tmpGF)));
|
|
tmpOther->push_back(ftmp);
|
|
}
|
|
else
|
|
delete tmpGF;
|
|
|
|
|
|
if (!tmpFG->empty())
|
|
{
|
|
formula* ftmp = 0;
|
|
if (mo->op() == multop::And)
|
|
ftmp
|
|
= unop::instance(unop::F,
|
|
unop::instance(unop::G,
|
|
multop::instance(mo->op(),
|
|
tmpFG)));
|
|
else
|
|
ftmp
|
|
= unop::instance(unop::F,
|
|
multop::instance(mo->op(), tmpFG));
|
|
tmpOther->push_back(ftmp);
|
|
}
|
|
else
|
|
delete tmpFG;
|
|
|
|
|
|
result_ = multop::instance(op, tmpOther);
|
|
|
|
return;
|
|
}
|
|
|
|
protected:
|
|
formula* result_;
|
|
};
|
|
}
|
|
|
|
formula*
|
|
basic_reduce(const formula* f)
|
|
{
|
|
basic_reduce_visitor v;
|
|
const_cast<formula*>(f)->accept(v);
|
|
return v.result();
|
|
}
|
|
|
|
}
|
|
}
|