spot/src/tgbaalgos/magic.cc
Denis Poitrenaud 3ea9771942 * src/tgbaalgos/magic.cc: Add a bit state hashing version.
* src/tgbaalgos/se05.cc: Add a bit state hashing version.
* src/tgbaalgos/magic.hh: Make them public.
* src/tgbatest/ltl2tgba.cc: Add the two new emptiness checks.
* src/tgbatest/emptchk.test: Incorporate tests of src/tgbatest/dfs.test.
* src/tgbatest/dfs.test: Introduce new characteristic explicit tests.
2004-11-15 12:16:59 +00:00

487 lines
14 KiB
C++

// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include <cstring>
#include <iostream>
#include "misc/hash.hh"
#include <list>
#include <iterator>
#include <cassert>
#include "magic.hh"
namespace spot
{
namespace
{
enum color {WHITE, BLUE, RED};
/// \brief Emptiness checker on spot::tgba automata having at most one
/// accepting condition (i.e. a TBA).
template <typename heap>
class magic_search : public emptiness_check
{
public:
/// \brief Initialize the Magic Search algorithm on the automaton \a a
///
/// \pre The automaton \a a must have at most one accepting
/// condition (i.e. it is a TBA).
magic_search(const tgba *a, size_t size)
: h(size), a(a), all_cond(a->all_acceptance_conditions())
{
assert(a->number_of_acceptance_conditions() <= 1);
}
virtual ~magic_search()
{
// Release all iterators on the stacks.
while (!st_blue.empty())
{
h.pop_notify(st_blue.front().s);
delete st_blue.front().it;
st_blue.pop_front();
}
while (!st_red.empty())
{
h.pop_notify(st_red.front().s);
delete st_red.front().it;
st_red.pop_front();
}
}
/// \brief Perform a Magic Search.
///
/// \return non null pointer iff the algorithm has found a
/// new accepting path.
///
/// check() can be called several times (until it returns a null
/// pointer) to enumerate all the visited accepting paths. The method
/// visits only a finite set of accepting paths.
virtual emptiness_check_result* check()
{
nbn = nbt = 0;
sts = mdp = st_blue.size() + st_red.size();
if (st_red.empty())
{
assert(st_blue.empty());
const state* s0 = a->get_init_state();
++nbn;
h.add_new_state(s0, BLUE);
push(st_blue, s0, bddfalse, bddfalse);
if (dfs_blue())
return new result(*this);
}
else
{
h.pop_notify(st_red.front().s);
delete st_red.front().it;
st_red.pop_front();
if (!st_red.empty() && dfs_red())
return new result(*this);
else
if (dfs_blue())
return new result(*this);
}
return 0;
}
virtual std::ostream& print_stats(std::ostream &os) const
{
os << nbn << " distinct nodes visited" << std::endl;
os << nbt << " transitions explored" << std::endl;
os << mdp << " nodes for the maximal stack depth" << std::endl;
if (!st_red.empty())
{
assert(!st_blue.empty());
os << st_blue.size() + st_red.size() - 1
<< " nodes for the counter example" << std::endl;
}
return os;
}
private:
/// \brief counters for statistics (number of distinct nodes, of
/// transitions and maximal stacks size.
int nbn, nbt, mdp, sts;
struct stack_item
{
stack_item(const state* n, tgba_succ_iterator* i, bdd l, bdd a)
: s(n), it(i), label(l), acc(a) {};
/// The visited state.
const state* s;
/// Design the next successor of \a s which has to be visited.
tgba_succ_iterator* it;
/// The label of the transition followed to reach \a s
/// (false for the first one).
bdd label;
/// The acc set of the transition followed to reach \a s
/// (false for the first one).
bdd acc;
};
typedef std::list<stack_item> stack_type;
void push(stack_type& st, const state* s,
const bdd& label, const bdd& acc)
{
++sts;
if (sts>mdp)
mdp = sts;
tgba_succ_iterator* i = a->succ_iter(s);
i->first();
st.push_front(stack_item(s, i, label, acc));
}
/// \brief Stack of the blue dfs.
stack_type st_blue;
/// \brief Stack of the red dfs.
stack_type st_red;
/// \brief Map where each visited state is colored
/// by the last dfs visiting it.
heap h;
/// State targeted by the red dfs.
const state* target;
/// The automata to check.
const tgba* a;
/// The unique accepting condition of the automaton \a a.
bdd all_cond;
bool dfs_blue()
{
while (!st_blue.empty())
{
stack_item& f = st_blue.front();
if (!f.it->done())
{
++nbt;
const state *s_prime = f.it->current_state();
bdd label = f.it->current_condition();
bdd acc = f.it->current_acceptance_conditions();
f.it->next();
typename heap::color_ref c = h.get_color_ref(s_prime);
if (c.is_white())
// Go down the edge (f.s, <label, acc>, s_prime)
{
++nbn;
h.add_new_state(s_prime, BLUE);
push(st_blue, s_prime, label, acc);
}
else // Backtrack the edge (f.s, <label, acc>, s_prime)
{
if (c.get() == BLUE && acc == all_cond)
// the test 'c.get() == BLUE' is added to limit
// the number of runs reported by successive
// calls to the check method. Without this
// functionnality, the test can be ommited.
{
target = f.s;
c.set(RED);
push(st_red, s_prime, label, acc);
if (dfs_red())
return true;
}
else
h.pop_notify(s_prime);
}
}
else
// Backtrack the edge
// (predecessor of f.s in st_blue, <f.label, f.acc>, f.s)
{
--sts;
stack_item f_dest(f);
delete f.it;
st_blue.pop_front();
typename heap::color_ref c = h.get_color_ref(f_dest.s);
assert(!c.is_white());
if (c.get() == BLUE && f_dest.acc == all_cond
&& !st_blue.empty())
// the test 'c.get() == BLUE' is added to limit
// the number of runs reported by successive
// calls to the check method. Without this
// functionnality, the test can be ommited.
{
target = st_blue.front().s;
c.set(RED);
push(st_red, f_dest.s, f_dest.label, f_dest.acc);
if (dfs_red())
return true;
}
else
h.pop_notify(f_dest.s);
}
}
return false;
}
bool dfs_red()
{
assert(!st_red.empty());
if (target->compare(st_red.front().s) == 0)
return true;
while (!st_red.empty())
{
stack_item& f = st_red.front();
if (!f.it->done()) // Go down
{
++nbt;
const state *s_prime = f.it->current_state();
bdd label = f.it->current_condition();
bdd acc = f.it->current_acceptance_conditions();
f.it->next();
typename heap::color_ref c = h.get_color_ref(s_prime);
if (c.is_white())
// Notice that this case is taken into account only to
// support successive calls to the check method. Without
// this functionnality, one can check assert(c.is_white()).
// Go down the edge (f.s, <label, acc>, s_prime)
{
++nbn;
h.add_new_state(s_prime, RED);
push(st_red, s_prime, label, acc);
}
else // Go down the edge (f.s, <label, acc>, s_prime)
{
if (c.get() != RED)
{
c.set(RED);
push(st_red, s_prime, label, acc);
if (target->compare(s_prime) == 0)
return true;
}
else
h.pop_notify(s_prime);
}
}
else // Backtrack
{
--sts;
h.pop_notify(f.s);
delete f.it;
st_red.pop_front();
}
}
return false;
}
class result: public emptiness_check_result
{
public:
result(magic_search& ms)
: ms_(ms)
{
}
virtual tgba_run* accepting_run()
{
assert(!ms_.st_blue.empty());
assert(!ms_.st_red.empty());
tgba_run* run = new tgba_run;
typename stack_type::const_reverse_iterator i, j, end;
tgba_run::steps* l;
l = &run->prefix;
i = ms_.st_blue.rbegin();
end = ms_.st_blue.rend(); --end;
j = i; ++j;
for (; i != end; ++i, ++j)
{
tgba_run::step s = { i->s->clone(), j->label, j->acc };
l->push_back(s);
}
l = &run->cycle;
j = ms_.st_red.rbegin();
tgba_run::step s = { i->s->clone(), j->label, j->acc };
l->push_back(s);
i = j; ++j;
end = ms_.st_red.rend(); --end;
for (; i != end; ++i, ++j)
{
tgba_run::step s = { i->s->clone(), j->label, j->acc };
l->push_back(s);
}
return run;
}
private:
magic_search& ms_;
};
};
class explicit_magic_search_heap
{
public:
class color_ref
{
public:
color_ref(color* c) :p(c)
{
}
color get() const
{
return *p;
}
void set(color c)
{
assert(!is_white());
*p=c;
}
bool is_white() const
{
return p==0;
}
private:
color *p;
};
explicit_magic_search_heap(size_t)
{
}
~explicit_magic_search_heap()
{
hash_type::const_iterator s = h.begin();
while (s != h.end())
{
// Advance the iterator before deleting the "key" pointer.
const state* ptr = s->first;
++s;
delete ptr;
}
}
color_ref get_color_ref(const state*& s)
{
hash_type::iterator it = h.find(s);
if (it==h.end())
return color_ref(0);
if (s!=it->first)
{
delete s;
s = it->first;
}
return color_ref(&(it->second));
}
void add_new_state(const state* s, color c)
{
assert(h.find(s)==h.end());
h.insert(std::make_pair(s, c));
}
void pop_notify(const state*)
{
}
private:
typedef Sgi::hash_map<const state*, color,
state_ptr_hash, state_ptr_equal> hash_type;
hash_type h;
};
class bsh_magic_search_heap
{
public:
class color_ref
{
public:
color_ref(unsigned char *b, unsigned char o): base(b), offset(o*2)
{
}
color get() const
{
return color(((*base) >> offset) & 3U);
}
void set(color c)
{
*base = (*base & ~(3U << offset)) | (c << offset);
}
bool is_white() const
{
return get()==WHITE;
}
private:
unsigned char *base;
unsigned char offset;
};
bsh_magic_search_heap(size_t s)
{
size = s;
h = new unsigned char[size];
memset(h, WHITE, size);
}
~bsh_magic_search_heap()
{
delete[] h;
}
color_ref get_color_ref(const state*& s)
{
size_t ha = s->hash();
return color_ref(&(h[ha%size]), ha%4);
}
void add_new_state(const state* s, color c)
{
color_ref cr(get_color_ref(s));
assert(cr.is_white());
cr.set(c);
}
void pop_notify(const state* s)
{
delete s;
}
private:
size_t size;
unsigned char* h;
};
} // anonymous
emptiness_check* explicit_magic_search(const tgba *a)
{
return new magic_search<explicit_magic_search_heap>(a, 0);
}
emptiness_check* bit_state_hashing_magic_search(
const tgba *a, size_t size)
{
return new magic_search<bsh_magic_search_heap>(a, size);
}
}