spot/src/tgbaalgos/ltl2tgba_fm.cc
Alexandre Duret-Lutz 691119c188 Introduce AndRat and OrRat operator.
It was a mistake to try to overload And/Or LTL operator for these when
trivial simplification are performed.  The reason is so simple it is
embarassing: And(f,1)=f is a trivial identity that should not be
applied with AndRat.  E.g. AndRat(a;b, 1) is equal to 0, not a;b.

* src/ltlast/multop.hh, src/ltlast/multop.cc: Add the AndRat and OrRat
operators.
* src/ltlparse/ltlparse.yy: Build them.
* src/ltlvisit/mark.cc, src/ltlvisit/simplify.cc,
src/ltlvisit/tostring.cc, src/tgba/formula2bdd.cc,
src/tgbaalgos/eltl2tgba_lacim.cc, src/tgbaalgos/ltl2taa.cc,
src/tgbaalgos/ltl2tgba_fm.cc, src/tgbaalgos/ltl2tgba_lacim.cc:
Adjust all switches.
2012-04-28 09:34:45 +02:00

2179 lines
55 KiB
C++

// Copyright (C) 2008, 2009, 2010, 2011, 2012 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
// d'Informatique de Paris 6 (LIP6), département Systèmes Répartis
// Coopératifs (SRC), Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "misc/hash.hh"
#include "misc/bddalloc.hh"
#include "misc/bddlt.hh"
#include "misc/minato.hh"
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
#include "ltlvisit/postfix.hh"
#include "ltlvisit/apcollect.hh"
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
#include <cassert>
#include <memory>
#include "ltl2tgba_fm.hh"
#include "tgba/bddprint.hh"
#include "tgbaalgos/scc.hh"
//#include "tgbaalgos/dotty.hh"
namespace spot
{
using namespace ltl;
namespace
{
class translate_dict;
class ratexp_to_dfa
{
public:
ratexp_to_dfa(translate_dict& dict);
tgba_succ_iterator* succ(const formula* f);
const formula* get_label(const formula* f, const state* s) const;
~ratexp_to_dfa();
protected:
tgba_explicit_formula* translate(const formula* f);
private:
translate_dict& dict_;
std::vector<tgba_explicit_formula*> automata_;
typedef Sgi::hash_map<const formula*, tgba_explicit_formula*,
formula_ptr_hash> f2a_t;
f2a_t f2a_;
};
// Helper dictionary. We represent formulae using BDDs to
// simplify them, and then translate BDDs back into formulae.
//
// The name of the variables are inspired from Couvreur's FM paper.
// "a" variables are promises (written "a" in the paper)
// "next" variables are X's operands (the "r_X" variables from the paper)
// "var" variables are atomic propositions.
class translate_dict
{
public:
translate_dict(bdd_dict* dict, ltl_simplifier* ls, bool exprop)
: dict(dict),
ls(ls),
a_set(bddtrue),
var_set(bddtrue),
next_set(bddtrue),
transdfa(*this),
exprop(exprop)
{
}
~translate_dict()
{
fv_map::iterator i;
for (i = next_map.begin(); i != next_map.end(); ++i)
i->first->destroy();
dict->unregister_all_my_variables(this);
formula_to_bdd_map::iterator j = ltl_bdd_unmarked_.begin();
// Advance the iterator before destroying previous value.
while (j != ltl_bdd_unmarked_.end())
j++->first->destroy();
j = ltl_bdd_marked_.begin();
while (j != ltl_bdd_marked_.end())
j++->first->destroy();
}
bdd_dict* dict;
ltl_simplifier* ls;
mark_tools mt;
typedef bdd_dict::fv_map fv_map;
typedef bdd_dict::vf_map vf_map;
fv_map next_map; ///< Maps "Next" variables to BDD variables
vf_map next_formula_map; ///< Maps BDD variables to "Next" variables
bdd a_set;
bdd var_set;
bdd next_set;
ratexp_to_dfa transdfa;
bool exprop;
struct translated
{
bdd symbolic;
bool has_rational:1;
bool has_marked:1;
};
typedef Sgi::hash_map<const formula*, translated, ptr_hash<formula> >
formula_to_bdd_map;
private:
formula_to_bdd_map ltl_bdd_unmarked_;
formula_to_bdd_map ltl_bdd_marked_;
public:
int
register_proposition(const formula* f)
{
int num = dict->register_proposition(f, this);
var_set &= bdd_ithvar(num);
return num;
}
int
register_a_variable(const formula* f)
{
int num = dict->register_acceptance_variable(f, this);
a_set &= bdd_ithvar(num);
return num;
}
int
register_next_variable(const formula* f)
{
int num;
// Do not build a Next variable that already exists.
fv_map::iterator sii = next_map.find(f);
if (sii != next_map.end())
{
num = sii->second;
}
else
{
f = f->clone();
num = dict->register_anonymous_variables(1, this);
next_map[f] = num;
next_formula_map[num] = f;
}
next_set &= bdd_ithvar(num);
return num;
}
std::ostream&
dump(std::ostream& os) const
{
fv_map::const_iterator fi;
os << "Next Variables:" << std::endl;
for (fi = next_map.begin(); fi != next_map.end(); ++fi)
{
os << " " << fi->second << ": Next[";
to_string(fi->first, os) << "]" << std::endl;
}
os << "Shared Dict:" << std::endl;
dict->dump(os);
return os;
}
formula*
var_to_formula(int var) const
{
vf_map::const_iterator isi = next_formula_map.find(var);
if (isi != next_formula_map.end())
return isi->second->clone();
isi = dict->acc_formula_map.find(var);
if (isi != dict->acc_formula_map.end())
return isi->second->clone();
isi = dict->var_formula_map.find(var);
if (isi != dict->var_formula_map.end())
return isi->second->clone();
assert(0);
// Never reached, but some GCC versions complain about
// a missing return otherwise.
return 0;
}
bdd
boolean_to_bdd(const formula* f)
{
bdd res = ls->as_bdd(f);
var_set &= bdd_support(res);
return res;
}
formula*
conj_bdd_to_formula(bdd b, multop::type op = multop::And) const
{
if (b == bddfalse)
return constant::false_instance();
multop::vec* v = new multop::vec;
while (b != bddtrue)
{
int var = bdd_var(b);
formula* res = var_to_formula(var);
bdd high = bdd_high(b);
if (high == bddfalse)
{
res = unop::instance(unop::Not, res);
b = bdd_low(b);
}
else
{
assert(bdd_low(b) == bddfalse);
b = high;
}
assert(b != bddfalse);
v->push_back(res);
}
return multop::instance(op, v);
}
formula*
conj_bdd_to_sere(bdd b) const
{
return conj_bdd_to_formula(b, multop::AndRat);
}
formula*
bdd_to_formula(bdd f)
{
if (f == bddfalse)
return constant::false_instance();
multop::vec* v = new multop::vec;
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
v->push_back(conj_bdd_to_formula(cube));
return multop::instance(multop::Or, v);
}
formula*
bdd_to_sere(bdd f)
{
if (f == bddfalse)
return constant::false_instance();
multop::vec* v = new multop::vec;
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
v->push_back(conj_bdd_to_sere(cube));
return multop::instance(multop::OrRat, v);
}
void
conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
state_explicit_formula::transition* t)
{
assert(b != bddfalse);
while (b != bddtrue)
{
int var = bdd_var(b);
bdd high = bdd_high(b);
if (high == bddfalse)
{
// Simply ignore negated acceptance variables.
b = bdd_low(b);
}
else
{
formula* ac = var_to_formula(var);
if (!a->has_acceptance_condition(ac))
a->declare_acceptance_condition(ac->clone());
a->add_acceptance_condition(t, ac);
b = high;
}
assert(b != bddfalse);
}
}
const translated&
ltl_to_bdd(const formula* f, bool mark_all);
};
#ifdef __GNUC__
# define unused __attribute__((unused))
#else
# define unused
#endif
// Debugging function.
static unused
std::ostream&
trace_ltl_bdd(const translate_dict& d, bdd f)
{
std::cerr << "Displaying BDD ";
bdd_print_set(std::cerr, d.dict, f) << ":" << std::endl;
minato_isop isop(f);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, d.next_set);
bdd dest_bdd = bdd_existcomp(cube, d.next_set);
const formula* dest = d.conj_bdd_to_formula(dest_bdd);
bdd_print_set(std::cerr, d.dict, label) << " => ";
bdd_print_set(std::cerr, d.dict, dest_bdd) << " = "
<< to_string(dest)
<< std::endl;
dest->destroy();
}
return std::cerr;
}
// Gather all promises of a formula. These are the
// right-hand sides of U or F operators.
class ltl_promise_visitor: public postfix_visitor
{
public:
ltl_promise_visitor(translate_dict& dict)
: dict_(dict), res_(bddtrue)
{
}
virtual
~ltl_promise_visitor()
{
}
bdd
result() const
{
return res_;
}
using postfix_visitor::doit;
virtual void
doit(unop* node)
{
if (node->op() == unop::F)
res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
}
virtual void
doit(binop* node)
{
if (node->op() == binop::U)
res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
}
private:
translate_dict& dict_;
bdd res_;
};
bdd translate_ratexp(const formula* f, translate_dict& dict,
formula* to_concat = 0);
// Rewrite rule for rational operators.
class ratexp_trad_visitor: public const_visitor
{
public:
// negated should only be set for constants or atomic properties
ratexp_trad_visitor(translate_dict& dict,
formula* to_concat = 0)
: dict_(dict), to_concat_(to_concat)
{
}
virtual
~ratexp_trad_visitor()
{
if (to_concat_)
to_concat_->destroy();
}
bdd
result() const
{
return res_;
}
bdd next_to_concat()
{
// Encoding X[*0] when there is nothing to concatenate is a
// way to ensure that we distinguish the rational formula "a"
// (encoded as "a&X[*0]") from the rational formula "a;[*]"
// (encoded as "a&X[*]").
//
// It's important that when we do "a && (a;[*])" we do not get
// "a;[*]" as it would occur if we had simply encoded "a" as
// "a".
if (!to_concat_)
to_concat_ = constant::empty_word_instance();
int x = dict_.register_next_variable(to_concat_);
return bdd_ithvar(x);
}
bdd now_to_concat()
{
if (to_concat_ && to_concat_ != constant::empty_word_instance())
return recurse(to_concat_);
return bddfalse;
}
// Append to_concat_ to all Next variables in IN.
bdd
concat_dests(bdd in)
{
if (!to_concat_)
return in;
minato_isop isop(in);
bdd cube;
bdd out = bddfalse;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest == constant::empty_word_instance())
{
out |= label & next_to_concat();
}
else
{
formula* dest2 = multop::instance(multop::Concat, dest,
to_concat_->clone());
if (dest2 != constant::false_instance())
{
int x = dict_.register_next_variable(dest2);
dest2->destroy();
out |= label & bdd_ithvar(x);
}
}
}
return out;
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(dict_.register_proposition(node));
res_ &= next_to_concat();
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = next_to_concat();
return;
case constant::False:
res_ = bddfalse;
return;
case constant::EmptyWord:
res_ = now_to_concat();
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* node)
{
switch (node->op())
{
case unop::F:
case unop::G:
case unop::X:
case unop::Finish:
case unop::Closure:
case unop::NegClosure:
assert(!"not a rational operator");
return;
case unop::Not:
{
// Not can only appear in front of Boolean
// expressions.
const formula* f = node->child();
assert(f->is_boolean());
res_ = !recurse(f);
res_ &= next_to_concat();
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const bunop* bo)
{
formula* f;
unsigned min = bo->min();
unsigned max = bo->max();
assert(max > 0);
unsigned min2 = (min == 0) ? 0 : (min - 1);
unsigned max2 =
(max == bunop::unbounded) ? bunop::unbounded : (max - 1);
bunop::type op = bo->op();
switch (op)
{
case bunop::Star:
f = bunop::instance(op, bo->child()->clone(), min2, max2);
if (to_concat_)
f = multop::instance(multop::Concat, f, to_concat_->clone());
if (!bo->child()->accepts_eword())
{
// f*;g -> f;f*;g | g
//
// If f does not accept the empty word, we can easily
// add "f*;g" as to_concat_ when translating f.
res_ = recurse(bo->child(), f);
if (min == 0)
res_ |= now_to_concat();
}
else
{
// if "f" accepts the empty word, doing the above would
// lead to an infinite loop:
// f*;g -> f;f*;g | g
// f;f*;g -> f*;g | ...
//
// So we do it in three steps:
// 1. translate f,
// 2. append f*;g to all destinations
// 3. add |g
res_ = recurse(bo->child());
// f*;g -> f;f*;g
minato_isop isop(res_);
bdd cube;
res_ = bddfalse;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
formula* dest2;
int x;
if (dest == constant::empty_word_instance())
{
x = dict_.register_next_variable(f);
res_ |= label & bdd_ithvar(x);
}
else
{
dest2 = multop::instance(multop::Concat, dest,
f->clone());
if (dest2 != constant::false_instance())
{
x = dict_.register_next_variable(dest2);
dest2->destroy();
res_ |= label & bdd_ithvar(x);
}
}
}
f->destroy();
res_ |= now_to_concat();
}
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop*)
{
assert(!"not a rational operator");
}
void
visit(const automatop*)
{
assert(!"not a rational operator");
}
void
visit(const multop* node)
{
multop::type op = node->op();
switch (op)
{
case multop::AndNLM:
{
unsigned s = node->size();
multop::vec* final = new multop::vec;
multop::vec* non_final = new multop::vec;
for (unsigned n = 0; n < s; ++n)
{
const formula* f = node->nth(n);
if (f->accepts_eword())
final->push_back(f->clone());
else
non_final->push_back(f->clone());
}
if (non_final->empty())
{
delete non_final;
// (a* & b*);c = (a*|b*);c
formula* f = multop::instance(multop::OrRat, final);
res_ = recurse_and_concat(f);
f->destroy();
break;
}
if (!final->empty())
{
// let F_i be final formulae
// N_i be non final formula
// (F_1 & ... & F_n & N_1 & ... & N_m)
// = (F_1 | ... | F_n);[*] && (N_1 & ... & N_m)
// | (F_1 | ... | F_n) && (N_1 & ... & N_m);[*]
formula* f = multop::instance(multop::OrRat, final);
formula* n = multop::instance(multop::AndNLM, non_final);
formula* t = bunop::instance(bunop::Star,
constant::true_instance());
formula* ft = multop::instance(multop::Concat,
f->clone(), t->clone());
formula* nt = multop::instance(multop::Concat,
n->clone(), t);
formula* ftn = multop::instance(multop::AndRat, ft, n);
formula* fnt = multop::instance(multop::AndRat, f, nt);
formula* all = multop::instance(multop::OrRat, ftn, fnt);
res_ = recurse_and_concat(all);
all->destroy();
break;
}
// No final formula.
delete final;
for (unsigned n = 0; n < s; ++n)
(*non_final)[n]->destroy();
delete non_final;
// Translate N_1 & N_2 & ... & N_n into
// N_1 && (N_2;[*]) && ... && (N_n;[*])
// | (N_1;[*]) && N_2 && ... && (N_n;[*])
// | (N_1;[*]) && (N_2;[*]) && ... && N_n
formula* star =
bunop::instance(bunop::Star, constant::true_instance());
multop::vec* disj = new multop::vec;
for (unsigned n = 0; n < s; ++n)
{
multop::vec* conj = new multop::vec;
for (unsigned m = 0; m < s; ++m)
{
formula* f = node->nth(m)->clone();
if (n != m)
f = multop::instance(multop::Concat,
f, star->clone());
conj->push_back(f);
}
disj->push_back(multop::instance(multop::AndRat, conj));
}
star->destroy();
formula* all = multop::instance(multop::OrRat, disj);
res_ = recurse_and_concat(all);
all->destroy();
break;
}
case multop::AndRat:
{
unsigned s = node->size();
res_ = bddtrue;
for (unsigned n = 0; n < s; ++n)
{
bdd res = recurse(node->nth(n));
// trace_ltl_bdd(dict_, res);
res_ &= res;
}
//std::cerr << "Pre-Concat:" << std::endl;
//trace_ltl_bdd(dict_, res_);
// If we have translated (a* && b*) in (a* && b*);c, we
// have to append ";c" to all destinations.
res_ = concat_dests(res_);
if (node->accepts_eword())
res_ |= now_to_concat();
if (op == multop::AndNLM)
node->destroy();
break;
}
case multop::OrRat:
{
res_ = bddfalse;
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
res_ |= recurse_and_concat(node->nth(n));
break;
}
case multop::Concat:
{
multop::vec* v = new multop::vec;
unsigned s = node->size();
v->reserve(s);
for (unsigned n = 1; n < s; ++n)
v->push_back(node->nth(n)->clone());
if (to_concat_)
v->push_back(to_concat_->clone());
res_ = recurse(node->nth(0),
multop::instance(multop::Concat, v));
break;
}
case multop::Fusion:
{
assert(node->size() >= 2);
// the head
bdd res = recurse(node->nth(0));
// the tail
formula* tail = node->all_but(0);
bdd tail_bdd;
bool tail_computed = false;
//trace_ltl_bdd(dict_, res);
minato_isop isop(res);
bdd cube;
res_ = bddfalse;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest->accepts_eword())
{
// The destination is a final state. Make sure we
// can also exit if tail is satisfied.
if (!tail_computed)
{
tail_bdd = recurse(tail);
tail_computed = true;
}
res_ |= concat_dests(label & tail_bdd);
}
if (dest->kind() != formula::Constant)
{
// If the destination is not a constant, it
// means it can have successors. Fusion the
// tail and append anything to concatenate.
formula* dest2 = multop::instance(multop::Fusion, dest,
tail->clone());
if (to_concat_)
dest2 = multop::instance(multop::Concat, dest2,
to_concat_->clone());
if (dest2 != constant::false_instance())
{
int x = dict_.register_next_variable(dest2);
dest2->destroy();
res_ |= label & bdd_ithvar(x);
}
}
}
tail->destroy();
break;
}
case multop::And:
case multop::Or:
assert(!"not a rational operator");
}
}
bdd
recurse(const formula* f, formula* to_concat = 0)
{
return translate_ratexp(f, dict_, to_concat);
}
bdd
recurse_and_concat(const formula* f)
{
return translate_ratexp(f, dict_,
to_concat_ ? to_concat_->clone() : 0);
}
private:
translate_dict& dict_;
bdd res_;
formula* to_concat_;
};
bdd
translate_ratexp(const formula* f, translate_dict& dict,
formula* to_concat)
{
// static unsigned indent = 0;
// for (unsigned i = indent; i > 0; --i)
// std::cerr << "| ";
// std::cerr << "translate_ratexp[" << to_string(f);
// if (to_concat)
// std::cerr << ", " << to_string(to_concat);
// std::cerr << "]" << std::endl;
// ++indent;
bdd res;
if (!f->is_boolean())
{
ratexp_trad_visitor v(dict, to_concat);
f->accept(v);
res = v.result();
}
else
{
res = dict.boolean_to_bdd(f);
// See comment for similar code in next_to_concat.
if (!to_concat)
to_concat = constant::empty_word_instance();
int x = dict.register_next_variable(to_concat);
res &= bdd_ithvar(x);
to_concat->destroy();
}
// --indent;
// for (unsigned i = indent; i > 0; --i)
// std::cerr << "| ";
// std::cerr << "\\ ";
// bdd_print_set(std::cerr, dict.dict, res) << std::endl;
return res;
}
ratexp_to_dfa::ratexp_to_dfa(translate_dict& dict)
: dict_(dict)
{
}
ratexp_to_dfa::~ratexp_to_dfa()
{
std::vector<tgba_explicit_formula*>::const_iterator it;
for (it = automata_.begin(); it != automata_.end(); ++it)
delete *it;
}
tgba_explicit_formula*
ratexp_to_dfa::translate(const formula* f)
{
assert(f->is_in_nenoform());
tgba_explicit_formula* a = new tgba_explicit_formula(dict_.dict);
typedef std::set<const formula*, formula_ptr_less_than> set_type;
set_type formulae_to_translate;
f->clone();
formulae_to_translate.insert(f);
a->set_init_state(f);
while (!formulae_to_translate.empty())
{
// Pick one formula.
const formula* now = *formulae_to_translate.begin();
formulae_to_translate.erase(formulae_to_translate.begin());
// Translate it
bdd res = translate_ratexp(now, dict_);
// Generate (deterministic) successors
bdd var_set = bdd_existcomp(bdd_support(res), dict_.var_set);
bdd all_props = bdd_existcomp(res, dict_.var_set);
while (all_props != bddfalse)
{
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= label;
const formula* dest =
dict_.bdd_to_sere(bdd_exist(res & label, dict_.var_set));
f2a_t::const_iterator i = f2a_.find(dest);
if (i != f2a_.end() && i->second == 0)
{
// This state is useless. Ignore it.
dest->destroy();
continue;
}
bool seen = a->has_state(dest);
state_explicit_formula::transition* t =
a->create_transition(now, dest);
t->condition = label;
if (!seen)
formulae_to_translate.insert(dest);
else
dest->destroy();
}
}
// Register all known propositions for a. This may contain
// proposition from other parts of the formula being translated,
// but this is not really important as this automaton will be
// short-lived. (Maybe it would even work without this line.)
dict_.dict->register_propositions(dict_.var_set, a);
//dotty_reachable(std::cerr, a);
// The following code trims the automaton in a crude way by
// eliminating SCCs that are not coaccessible. It does not
// actually remove the states, it simply marks the corresponding
// formulae as associated to the null pointer in the f2a_ map.
// The method succ() and get_label() interpret this as False.
scc_map* sm = new scc_map(a);
sm->build_map();
unsigned scc_count = sm->scc_count();
// Remember whether each SCC is coaccessible.
std::vector<bool> coaccessible(scc_count);
// SCC are numbered in topological order
for (unsigned n = 0; n < scc_count; ++n)
{
bool coacc = false;
const std::list<const state*>& st = sm->states_of(n);
// The SCC is coaccessible if any of its states
// is final (i.e., it accepts [*0])...
std::list<const state*>::const_iterator it;
for (it = st.begin(); it != st.end(); ++it)
if (a->get_label(*it)->accepts_eword())
{
coacc = true;
break;
}
if (!coacc)
{
// ... or if any of its successors is coaccessible.
const scc_map::succ_type& succ = sm->succ(n);
for (scc_map::succ_type::const_iterator i = succ.begin();
i != succ.end(); ++i)
if (coaccessible[i->first])
{
coacc = true;
break;
}
}
if (!coacc)
{
// Mark all formulas of this SCC as useless.
for (it = st.begin(); it != st.end(); ++it)
f2a_[a->get_label(*it)] = 0;
}
else
{
for (it = st.begin(); it != st.end(); ++it)
f2a_[a->get_label(*it)] = a;
}
coaccessible[n] = coacc;
}
delete sm;
if (coaccessible[scc_count - 1])
{
automata_.push_back(a);
return a;
}
else
{
delete a;
return 0;
}
}
tgba_succ_iterator*
ratexp_to_dfa::succ(const formula* f)
{
f2a_t::const_iterator it = f2a_.find(f);
tgba_explicit_formula* a;
if (it != f2a_.end())
a = it->second;
else
a = translate(f);
// If a is nul, f has an empty language.
if (!a)
return 0;
assert(a->has_state(f));
// This won't create a new state.
const state* s = a->add_state(f);
return a->succ_iter(s);
}
const formula*
ratexp_to_dfa::get_label(const formula* f, const state* s) const
{
f2a_t::const_iterator it = f2a_.find(f);
assert(it != f2a_.end());
tgba_explicit_formula* a = it->second;
assert(a != 0);
const formula* f2 = a->get_label(s);
f2a_t::const_iterator it2 = f2a_.find(f2);
assert(it2 != f2a_.end());
if (it2->second == 0)
return constant::false_instance();
return f2->clone();
}
// The rewrite rules used here are adapted from Jean-Michel
// Couvreur's FM paper, augmented to support rational operators.
class ltl_trad_visitor: public const_visitor
{
public:
ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
bool exprop = false)
: dict_(dict), rat_seen_(false), has_marked_(false),
mark_all_(mark_all), exprop_(exprop)
{
}
virtual
~ltl_trad_visitor()
{
}
void
reset(bool mark_all)
{
rat_seen_ = false;
has_marked_ = false;
mark_all_ = mark_all;
}
bdd
result() const
{
return res_;
}
const translate_dict&
get_dict() const
{
return dict_;
}
bool
has_rational() const
{
return rat_seen_;
}
bool
has_marked() const
{
return has_marked_;
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(dict_.register_proposition(node));
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
case constant::EmptyWord:
assert(!"Not an LTL operator");
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* node)
{
unop::type op = node->op();
switch (op)
{
case unop::F:
{
// r(Fy) = r(y) + a(y)r(XFy)
const formula* child = node->child();
bdd y = recurse(child);
int a = dict_.register_a_variable(child);
int x = dict_.register_next_variable(node);
res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
break;
}
case unop::G:
{
// The paper suggests that we optimize GFy
// as
// r(GFy) = (r(y) + a(y))r(XGFy)
// instead of
// r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
// but this is just a particular case
// of the "merge all states with the same
// symbolic rewriting" optimization we do later.
// (r(Fy).r(GFy) and r(GFy) have the same symbolic
// rewriting.) Let's keep things simple here.
// r(Gy) = r(y)r(XGy)
const formula* child = node->child();
int x = dict_.register_next_variable(node);
bdd y = recurse(child);
res_ = y & bdd_ithvar(x);
break;
}
case unop::Not:
{
// r(!y) = !r(y)
res_ = bdd_not(recurse(node->child()));
break;
}
case unop::X:
{
// r(Xy) = Next[y]
int x = dict_.register_next_variable(node->child());
res_ = bdd_ithvar(x);
break;
}
case unop::Closure:
{
rat_seen_ = true;
const formula* f = node->child();
if (f->accepts_eword())
{
res_ = bddtrue;
return;
}
tgba_succ_iterator* i = dict_.transdfa.succ(f);
res_ = bddfalse;
if (!i)
break;
for (i->first(); !i->done(); i->next())
{
bdd label = i->current_condition();
state* s = i->current_state();
const formula* dest = dict_.transdfa.get_label(f, s);
s->destroy();
if (dest->accepts_eword())
{
dest->destroy();
res_ |= label;
}
else
{
formula* dest2 =
unop::instance(op, const_cast<formula*>(dest));
if (dest2 == constant::false_instance())
continue;
int x = dict_.register_next_variable(dest2);
dest2->destroy();
res_ |= label & bdd_ithvar(x);
}
}
delete i;
}
break;
case unop::NegClosure:
{
rat_seen_ = true;
has_marked_ = true;
if (node->child()->accepts_eword())
{
res_ = bddfalse;
return;
}
bdd f1 = translate_ratexp(node->child(), dict_);
// trace_ltl_bdd(dict_, f1);
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
bdd all_props = bdd_existcomp(f1, dict_.var_set);
res_ = !all_props &
// stick X(1) to preserve determinism.
bdd_ithvar(dict_.register_next_variable
(constant::true_instance()));
while (all_props != bddfalse)
{
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= label;
formula* dest =
dict_.bdd_to_sere(bdd_exist(f1 & label, dict_.var_set));
// !{ Exp } is false if Exp accepts the empty word.
if (dest->accepts_eword())
{
dest->destroy();
continue;
}
const formula* dest2 = unop::instance(op, dest);
if (dest == constant::false_instance())
continue;
int x = dict_.register_next_variable(dest2);
dest2->destroy();
res_ |= label & bdd_ithvar(x);
}
}
break;
case unop::Finish:
assert(!"unsupported operator");
break;
}
}
void
visit(const bunop*)
{
assert(!"Not an LTL operator");
}
void
visit(const binop* node)
{
binop::type op = node->op();
switch (op)
{
// r(f1 logical-op f2) = r(f1) logical-op r(f2)
case binop::Xor:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
res_ = bdd_apply(f1, f2, bddop_xor);
return;
}
case binop::Implies:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
res_ = bdd_apply(f1, f2, bddop_imp);
return;
}
case binop::Equiv:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
}
case binop::U:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
// r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
int a = dict_.register_a_variable(node->second());
int x = dict_.register_next_variable(node);
res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
break;
}
case binop::W:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
// r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
int x = dict_.register_next_variable(node);
res_ = f2 | (f1 & bdd_ithvar(x));
break;
}
case binop::R:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
// r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
int x = dict_.register_next_variable(node);
res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
break;
}
case binop::M:
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
// r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
int a = dict_.register_a_variable(node->first());
int x = dict_.register_next_variable(node);
res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
break;
}
case binop::EConcatMarked:
has_marked_ = true;
/* fall through */
case binop::EConcat:
rat_seen_ = true;
{
// Recognize f2 on transitions going to destinations
// that accept the empty word.
bdd f2 = recurse(node->second());
bdd f1 = translate_ratexp(node->first(), dict_);
res_ = bddfalse;
if (mark_all_)
{
op = binop::EConcatMarked;
has_marked_ = true;
}
if (exprop_)
{
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
bdd all_props = bdd_existcomp(f1, dict_.var_set);
while (all_props != bddfalse)
{
bdd label = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= label;
formula* dest =
dict_.bdd_to_sere(bdd_exist(f1 & label,
dict_.var_set));
const formula* dest2 =
binop::instance(op, dest, node->second()->clone());
if (dest2 != constant::false_instance())
{
int x = dict_.register_next_variable(dest2);
dest2->destroy();
res_ |= label & bdd_ithvar(x);
}
if (dest->accepts_eword())
res_ |= label & f2;
}
}
else
{
minato_isop isop(f1);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
if (dest == constant::empty_word_instance())
{
res_ |= label & f2;
}
else
{
formula* dest2 = binop::instance(op, dest,
node->second()->clone());
if (dest2 != constant::false_instance())
{
int x = dict_.register_next_variable(dest2);
dest2->destroy();
res_ |= label & bdd_ithvar(x);
}
if (dest->accepts_eword())
res_ |= label & f2;
}
}
}
}
break;
case binop::UConcat:
{
// Transitions going to destinations accepting the empty
// word should recognize f2, and the automaton for f1
// should be understood as universal.
bdd f2 = recurse(node->second());
bdd f1 = translate_ratexp(node->first(), dict_);
res_ = bddtrue;
bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
bdd all_props = bdd_existcomp(f1, dict_.var_set);
while (all_props != bddfalse)
{
bdd one_prop_set = bddtrue;
if (exprop_)
one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= one_prop_set;
minato_isop isop(f1 & one_prop_set);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, dict_.next_set);
bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
formula* dest = dict_.conj_bdd_to_sere(dest_bdd);
formula* dest2 =
binop::instance(op, dest, node->second()->clone());
bdd udest =
bdd_ithvar(dict_.register_next_variable(dest2));
if (dest->accepts_eword())
udest &= f2;
dest2->destroy();
res_ &= bdd_apply(label, udest, bddop_imp);
}
}
}
break;
}
}
void
visit(const automatop*)
{
assert(!"unsupported operator");
}
void
visit(const multop* node)
{
switch (node->op())
{
case multop::And:
{
res_ = bddtrue;
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
{
bdd res = recurse(node->nth(n));
//std::cerr << "== in And (" << to_string(node->nth(n))
// << ")" << std::endl;
// trace_ltl_bdd(dict_, res);
res_ &= res;
}
//std::cerr << "=== And final" << std::endl;
// trace_ltl_bdd(dict_, res_);
break;
}
case multop::Or:
{
res_ = bddfalse;
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
res_ |= recurse(node->nth(n));
break;
}
case multop::Concat:
case multop::Fusion:
case multop::AndNLM:
case multop::AndRat:
case multop::OrRat:
assert(!"Not an LTL operator");
break;
}
}
bdd
recurse(const formula* f)
{
const translate_dict::translated& t = dict_.ltl_to_bdd(f, mark_all_);
rat_seen_ |= t.has_rational;
has_marked_ |= t.has_marked;
return t.symbolic;
}
private:
translate_dict& dict_;
bdd res_;
bool rat_seen_;
bool has_marked_;
bool mark_all_;
bool exprop_;
};
const translate_dict::translated&
translate_dict::ltl_to_bdd(const formula* f, bool mark_all)
{
formula_to_bdd_map* m;
if (mark_all || f->is_ltl_formula())
m = &ltl_bdd_marked_;
else
m = &ltl_bdd_unmarked_;
formula_to_bdd_map::const_iterator i = m->find(f);
if (i != m->end())
return i->second;
translated t;
if (f->is_boolean())
{
t.symbolic = boolean_to_bdd(f);
t.has_rational = false;
t.has_marked = false;
}
else
{
ltl_trad_visitor v(*this, mark_all, exprop);
f->accept(v);
t.symbolic = v.result();
t.has_rational = v.has_rational();
t.has_marked = v.has_marked();
}
return m->insert(std::make_pair(f->clone(), t)).first->second;
}
// Check whether a formula has a R, W, or G operator at its
// top-level (preceding logical operators do not count).
class ltl_possible_fair_loop_visitor: public const_visitor
{
public:
ltl_possible_fair_loop_visitor()
: res_(false)
{
}
virtual
~ltl_possible_fair_loop_visitor()
{
}
bool
result() const
{
return res_;
}
void
visit(const atomic_prop*)
{
}
void
visit(const constant*)
{
}
void
visit(const unop* node)
{
if (node->op() == unop::G)
res_ = true;
}
void
visit(const binop* node)
{
switch (node->op())
{
// r(f1 logical-op f2) = r(f1) logical-op r(f2)
case binop::Xor:
case binop::Implies:
case binop::Equiv:
node->first()->accept(*this);
if (!res_)
node->second()->accept(*this);
return;
case binop::U:
case binop::M:
return;
case binop::R:
case binop::W:
res_ = true;
return;
case binop::UConcat:
case binop::EConcat:
case binop::EConcatMarked:
node->second()->accept(*this);
// FIXME: we might need to add Acc[1]
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const automatop*)
{
assert(!"unsupported operator");
}
void
visit(const bunop*)
{
assert(!"unsupported operator");
}
void
visit(const multop* node)
{
unsigned s = node->size();
for (unsigned n = 0; n < s && !res_; ++n)
{
node->nth(n)->accept(*this);
}
}
private:
bool res_;
};
// Check whether a formula can be part of a fair loop.
// Cache the result for efficiency.
class possible_fair_loop_checker
{
public:
bool
check(const formula* f)
{
pfl_map::const_iterator i = pfl_.find(f);
if (i != pfl_.end())
return i->second;
ltl_possible_fair_loop_visitor v;
f->accept(v);
bool rel = v.result();
pfl_[f] = rel;
return rel;
}
private:
typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
pfl_map pfl_;
};
class formula_canonizer
{
public:
formula_canonizer(translate_dict& d,
bool fair_loop_approx, bdd all_promises)
: fair_loop_approx_(fair_loop_approx),
all_promises_(all_promises),
d_(d)
{
// For cosmetics, register 1 initially, so the algorithm will
// not register an equivalent formula first.
b2f_[bddtrue] = constant::true_instance();
}
~formula_canonizer()
{
translate_dict::formula_to_bdd_map::iterator i = f2b_.begin();
while (i != f2b_.end())
// Advance the iterator before destroying previous value.
i++->first->destroy();
}
// This wrap translate_dict::ltl_to_bdd() for top-level formulas.
// In case the formula contains SERE operators, we need to decide
// if we have to mark unmarked operators, and more
const translate_dict::translated&
translate(const formula* f, bool* new_flag = 0)
{
// Use the cached result if available.
translate_dict::formula_to_bdd_map::const_iterator i = f2b_.find(f);
if (i != f2b_.end())
return i->second;
if (new_flag)
*new_flag = true;
// Perform the actual translation.
translate_dict::translated t = d_.ltl_to_bdd(f, !f->is_marked());
// std::cerr << "-----" << std::endl;
// std::cerr << "Formula: " << to_string(f) << std::endl;
// std::cerr << "Rational: " << t.has_rational << std::endl;
// std::cerr << "Marked: " << t.has_marked << std::endl;
// std::cerr << "Mark all: " << !f->is_marked() << std::endl;
// std::cerr << "Transitions:" << std::endl;
// trace_ltl_bdd(d_, t.symbolic);
// std::cerr << "-----" << std::endl;
if (t.has_rational)
{
bdd res = bddfalse;
minato_isop isop(t.symbolic);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, d_.next_set);
bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
formula* dest =
d_.conj_bdd_to_formula(dest_bdd);
// Handle a Miyano-Hayashi style unrolling for
// rational operators. Marked nodes correspond to
// subformulae in the Miyano-Hayashi set.
formula* tmp = d_.mt.simplify_mark(dest);
dest->destroy();
dest = tmp;
if (dest->is_marked())
{
// Make the promise that we will exit marked sets.
int a =
d_.register_a_variable(constant::true_instance());
label &= bdd_ithvar(a);
}
else
{
// We have no marked operators, but still
// have other rational operator to check.
// Start a new marked cycle.
formula* dest2 = d_.mt.mark_concat_ops(dest);
dest->destroy();
dest = dest2;
}
// Note that simplify_mark may have changed dest.
dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
dest->destroy();
res |= label & dest_bdd;
}
t.symbolic = res;
// std::cerr << "Marking rewriting:" << std::endl;
// trace_ltl_bdd(v_.get_dict(), t.symbolic);
}
// Apply the fair-loop approximation if requested.
if (fair_loop_approx_)
{
// If the source cannot possibly be part of a fair
// loop, make all possible promises.
if (fair_loop_approx_
&& f != constant::true_instance()
&& !pflc_.check(f))
t.symbolic &= all_promises_;
}
// Register the reverse mapping if it is not already done.
if (b2f_.find(t.symbolic) == b2f_.end())
b2f_[t.symbolic] = f;
return f2b_.insert(std::make_pair(f->clone(), t)).first->second;
}
const formula*
canonize(const formula* f)
{
bool new_variable = false;
bdd b = translate(f, &new_variable).symbolic;
bdd_to_formula_map::iterator i = b2f_.find(b);
// Since we have just translated the formula, it is
// necessarily in b2f_.
assert(i != b2f_.end());
if (i->second != f)
{
// The translated bdd maps to an already seen formula.
f->destroy();
f = i->second->clone();
}
return f;
}
bdd used_vars()
{
return d_.var_set;
}
private:
// Map a representation of successors to a canonical formula.
// We do this because many formulae (such as `aR(bRc)' and
// `aR(bRc).(bRc)') are equivalent, and are trivially identified
// by looking at the set of successors.
typedef Sgi::hash_map<bdd, const formula*, bdd_hash> bdd_to_formula_map;
bdd_to_formula_map b2f_;
// Map each formula to its associated bdd. This speed things up when
// the same formula is translated several times, which especially
// occurs when canonize() is called repeatedly inside exprop.
translate_dict::formula_to_bdd_map f2b_;
possible_fair_loop_checker pflc_;
bool fair_loop_approx_;
bdd all_promises_;
translate_dict& d_;
};
}
typedef std::map<bdd, bdd, bdd_less_than> prom_map;
typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
static void
fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
{
bdd conds = bdd_existcomp(label, d.var_set);
bdd promises = bdd_existcomp(label, d.a_set);
dest_map::iterator i = dests.find(dest);
if (i == dests.end())
{
dests[dest][promises] = conds;
}
else
{
i->second[promises] |= conds;
dest->destroy();
}
}
tgba_explicit_formula*
ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
bool exprop, bool symb_merge, bool branching_postponement,
bool fair_loop_approx, const atomic_prop_set* unobs,
ltl_simplifier* simplifier)
{
formula* f2;
ltl_simplifier* s = simplifier;
// Simplify the formula, if requested.
if (s)
{
// This will normalize the formula regardless of the
// configuration of the simplifier.
f2 = s->simplify(f);
}
else
{
// Otherwise, at least normalize the formula. We want all the
// negations on the atomic propositions. We also suppress
// logic abbreviations such as <=>, =>, or XOR, since they
// would involve negations at the BDD level.
s = new ltl_simplifier(dict);
f2 = s->negative_normal_form(f, false);
}
typedef std::set<const formula*, formula_ptr_less_than> set_type;
set_type formulae_to_translate;
assert(dict == s->get_dict());
translate_dict d(dict, s, exprop);
// Compute the set of all promises that can possibly occur
// inside the formula.
bdd all_promises = bddtrue;
if (fair_loop_approx || unobs)
{
ltl_promise_visitor pv(d);
f2->accept(pv);
all_promises = pv.result();
}
formula_canonizer fc(d, fair_loop_approx, all_promises);
// These are used when atomic propositions are interpreted as
// events. There are two kinds of events: observable events are
// those used in the formula, and unobservable events or other
// events that can occur at anytime. All events exclude each
// other.
bdd observable_events = bddfalse;
bdd unobservable_events = bddfalse;
if (unobs)
{
bdd neg_events = bddtrue;
std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
for (atomic_prop_set::const_iterator i = aps->begin();
i != aps->end(); ++i)
{
int p = d.register_proposition(*i);
bdd pos = bdd_ithvar(p);
bdd neg = bdd_nithvar(p);
observable_events = (observable_events & neg) | (neg_events & pos);
neg_events &= neg;
}
for (atomic_prop_set::const_iterator i = unobs->begin();
i != unobs->end(); ++i)
{
int p = d.register_proposition(*i);
bdd pos = bdd_ithvar(p);
bdd neg = bdd_nithvar(p);
unobservable_events = ((unobservable_events & neg)
| (neg_events & pos));
observable_events &= neg;
neg_events &= neg;
}
}
bdd all_events = observable_events | unobservable_events;
tgba_explicit_formula* a = new tgba_explicit_formula(dict);
// This is in case the initial state is equivalent to true...
if (symb_merge)
f2 = const_cast<formula*>(fc.canonize(f2));
formulae_to_translate.insert(f2);
a->set_init_state(f2);
while (!formulae_to_translate.empty())
{
// Pick one formula.
const formula* now = *formulae_to_translate.begin();
formulae_to_translate.erase(formulae_to_translate.begin());
// Translate it into a BDD to simplify it.
const translate_dict::translated& t = fc.translate(now);
bdd res = t.symbolic;
// Handle exclusive events.
if (unobs)
{
res &= observable_events;
int n = d.register_next_variable(now);
res |= unobservable_events & bdd_ithvar(n) & all_promises;
}
// We used to factor only Next and A variables while computing
// prime implicants, with
// minato_isop isop(res, d.next_set & d.a_set);
// in order to obtain transitions with formulae of atomic
// proposition directly, but unfortunately this led to strange
// factorizations. For instance f U g was translated as
// r(f U g) = g + a(g).r(X(f U g)).(f + g)
// instead of just
// r(f U g) = g + a(g).r(X(f U g)).f
// Of course both formulae are logically equivalent, but the
// latter is "more deterministic" than the former, so it should
// be preferred.
//
// Therefore we now factor all variables. This may lead to more
// transitions than necessary (e.g., r(f + g) = f + g will be
// coded as two transitions), but we later merge all transitions
// with same source/destination and acceptance conditions. This
// is the goal of the `dests' hash.
//
// Note that this is still not optimal. For instance it is
// better to encode `f U g' as
// r(f U g) = g + a(g).r(X(f U g)).f.!g
// because that leads to a deterministic automaton. In order
// to handle this, we take the conditions of any transition
// going to true (it's `g' here), and remove it from the other
// transitions.
//
// In `exprop' mode, considering all possible combinations of
// outgoing propositions generalizes the above trick.
dest_map dests;
// Compute all outgoing arcs.
// If EXPROP is set, we will refine the symbolic
// representation of the successors for all combinations of
// the atomic properties involved in the formula.
// VAR_SET is the set of these properties.
bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
// ALL_PROPS is the combinations we have yet to consider.
// We used to start with `all_props = bddtrue', but it is
// more efficient to start with the set of all satisfiable
// variables combinations.
bdd all_props = bdd_existcomp(res, d.var_set);
while (all_props != bddfalse)
{
bdd one_prop_set = bddtrue;
if (exprop)
one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
all_props -= one_prop_set;
typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
succ_map succs;
// Compute prime implicants.
// The reason we use prime implicants and not bdd_satone()
// is that we do not want to get any negation in front of Next
// or Acc variables. We wouldn't know what to do with these.
// We never added negations in front of these variables when
// we built the BDD, so prime implicants will not "invent" them.
//
// FIXME: minato_isop is quite expensive, and I (=adl)
// don't think we really care that much about getting the
// smalled sum of products that minato_isop strives to
// compute. Given that Next and Acc variables should
// always be positive, maybe there is a faster way to
// compute the successors? E.g. using bdd_satone() and
// ignoring negated Next and Acc variables.
minato_isop isop(res & one_prop_set);
bdd cube;
while ((cube = isop.next()) != bddfalse)
{
bdd label = bdd_exist(cube, d.next_set);
bdd dest_bdd = bdd_existcomp(cube, d.next_set);
const formula* dest = d.conj_bdd_to_formula(dest_bdd);
// Simplify the formula, if requested.
if (simplifier)
{
formula* tmp = simplifier->simplify(dest);
dest->destroy();
dest = tmp;
// Ignore the arc if the destination reduces to false.
if (dest == constant::false_instance())
continue;
}
// If we already know a state with the same
// successors, use it in lieu of the current one.
if (symb_merge)
dest = fc.canonize(dest);
// If we are not postponing the branching, we can
// declare the outgoing transitions immediately.
// Otherwise, we merge transitions with identical
// label, and declare the outgoing transitions in a
// second loop.
if (!branching_postponement)
{
fill_dests(d, dests, label, dest);
}
else
{
succ_map::iterator si = succs.find(label);
if (si == succs.end())
succs[label] = dest;
else
si->second =
multop::instance(multop::Or,
const_cast<formula*>(si->second),
const_cast<formula*>(dest));
}
}
if (branching_postponement)
for (succ_map::const_iterator si = succs.begin();
si != succs.end(); ++si)
fill_dests(d, dests, si->first, si->second);
}
// Check for an arc going to 1 (True). Register it first, that
// way it will be explored before others during model checking.
dest_map::const_iterator i = dests.find(constant::true_instance());
// COND_FOR_TRUE is the conditions of the True arc, so we
// can remove them from all other arcs. It might sounds that
// this is not needed when exprop is used, but in fact it is
// complementary.
//
// Consider
// f = r(X(1) R p) = p.(1 + r(X(1) R p))
// with exprop the two outgoing arcs would be
// p p
// f ----> 1 f ----> f
//
// where in fact we could output
// p
// f ----> 1
//
// because there is no point in looping on f if we can go to 1.
bdd cond_for_true = bddfalse;
if (i != dests.end())
{
// When translating LTL for an event-based logic with
// unobservable events, the 1 state should accept all events,
// even unobservable events.
if (unobs && now == constant::true_instance())
cond_for_true = all_events;
else
{
// There should be only one transition going to 1 (true) ...
assert(i->second.size() == 1);
prom_map::const_iterator j = i->second.begin();
// ... and it is not expected to make any promises (unless
// fair loop approximations are used).
assert(fair_loop_approx || j->first == bddtrue);
cond_for_true = j->second;
}
if (!a->has_state(constant::true_instance()))
formulae_to_translate.insert(constant::true_instance());
state_explicit_formula::transition* t =
a->create_transition(now, constant::true_instance());
t->condition = cond_for_true;
}
// Register other transitions.
for (i = dests.begin(); i != dests.end(); ++i)
{
const formula* dest = i->first;
// The cond_for_true optimization can cause some
// transitions to be removed. So we have to remember
// whether a formula is actually reachable.
bool reachable = false;
// Will this be a new state?
bool seen = a->has_state(dest);
if (dest != constant::true_instance())
{
for (prom_map::const_iterator j = i->second.begin();
j != i->second.end(); ++j)
{
bdd cond = j->second - cond_for_true;
if (cond == bddfalse) // Skip false transitions.
continue;
state_explicit_formula::transition* t =
a->create_transition(now, dest);
t->condition = cond;
d.conj_bdd_to_acc(a, j->first, t);
reachable = true;
}
}
else
{
// "1" is reachable.
reachable = true;
}
if (reachable && !seen)
formulae_to_translate.insert(dest);
else
dest->destroy();
}
}
dict->register_propositions(fc.used_vars(), a);
// Turn all promises into real acceptance conditions.
a->complement_all_acceptance_conditions();
if (!simplifier)
// This should not be deleted before we have registered all propositions.
delete s;
return a;
}
}