spot/spot/tl/formula.hh
Alexandre Duret-Lutz 6ec6150462 translate: improve handling of Xor and Equiv at top-level for -G -D
* spot/tl/formula.hh: Add variant of formula::is that support 4
arguments.
* spot/tl/simplify.hh, spot/tl/simplify.cc: Add option keep_top_xor
to preserve Xor and Equiv at the top-level.
* spot/twaalgos/translate.cc: Adjust ltl-split to deal with Xor and
Equiv for the -D -G case.
* NEWS: Mention that.
* tests/core/ltl2tgba2.test: Add test case.
* tests/python/simstate.py: Adjust expected result.
2020-07-13 16:30:29 +02:00

1818 lines
52 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2015-2020 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file tl/formula.hh
/// \brief LTL/PSL formula interface
#pragma once
/// \defgroup tl Temporal Logic
///
/// Spot supports the future-time fragment of LTL, and the linear-time
/// fragment of and PSL formulas. The former is included in the
/// latter. Both types of formulas are represented by instances of
/// the spot::formula class.
/// \addtogroup tl_essentials Essential Temporal Logic Types
/// \ingroup tl
/// \addtogroup tl_io Input and Output of Formulas
/// \ingroup tl
/// \addtogroup tl_rewriting Rewriting Algorithms for Formulas
/// \ingroup tl
/// \addtogroup tl_hier Algorithms related to the temporal hierarchy
/// \ingroup tl
/// \addtogroup tl_misc Miscellaneous Algorithms for Formulas
/// \ingroup tl
#include <spot/misc/common.hh>
#include <memory>
#include <cstdint>
#include <initializer_list>
#include <cassert>
#include <vector>
#include <string>
#include <iterator>
#include <iosfwd>
#include <sstream>
#include <list>
#include <cstddef>
#include <limits>
// The strong_X operator was introduced in Spot 2.8.2 to fix an issue
// with from_ltlf(). As adding a new operator is a backward
// incompatibility, causing new warnings from the compiler.
#if defined(SPOT_BUILD) or defined(SPOT_USES_STRONG_X)
// Use #if SPOT_HAS_STRONG_X in code that need to be backward
// compatible with older Spot versions.
# define SPOT_HAS_STRONG_X 1
// You me #define SPOT_WANT_STRONG_X yourself before including
// this file to force the use of STRONG_X
# define SPOT_WANT_STRONG_X 1
#endif
namespace spot
{
/// \ingroup tl_essentials
/// \brief Operator types
enum class op: uint8_t
{
ff, ///< False
tt, ///< True
eword, ///< Empty word
ap, ///< Atomic proposition
// unary operators
Not, ///< Negation
X, ///< Next
F, ///< Eventually
G, ///< Globally
Closure, ///< PSL Closure
NegClosure, ///< Negated PSL Closure
NegClosureMarked, ///< marked version of the Negated PSL Closure
// binary operators
Xor, ///< Exclusive Or
Implies, ///< Implication
Equiv, ///< Equivalence
U, ///< until
R, ///< release (dual of until)
W, ///< weak until
M, ///< strong release (dual of weak until)
EConcat, ///< Seq
EConcatMarked, ///< Seq, Marked
UConcat, ///< Triggers
// n-ary operators
Or, ///< (omega-Rational) Or
OrRat, ///< Rational Or
And, ///< (omega-Rational) And
AndRat, ///< Rational And
AndNLM, ///< Non-Length-Matching Rational-And
Concat, ///< Concatenation
Fusion, ///< Fusion
// star-like operators
Star, ///< Star
FStar, ///< Fustion Star
first_match, ///< first_match(sere)
#ifdef SPOT_WANT_STRONG_X
strong_X, ///< strong Next
#endif
};
#ifndef SWIG
/// \brief Actual storage for formula nodes.
///
/// spot::formula objects contain references to instances of this
/// class, and delegate most of their methods. Because
/// spot::formula is meant to be the public interface, most of the
/// methods are documented there, rather than here.
class SPOT_API fnode final
{
public:
/// \brief Clone an fnode.
///
/// This simply increment the reference counter. If the counter
/// saturates, the fnode will stay permanently allocated.
const fnode* clone() const
{
// Saturate.
++refs_;
if (SPOT_UNLIKELY(!refs_))
saturated_ = 1;
return this;
}
/// \brief Dereference an fnode.
///
/// This decrement the reference counter (unless the counter is
/// saturated), and actually deallocate the fnode when the
/// counder reaches 0 (unless the fnode denotes a constant).
void destroy() const
{
if (SPOT_LIKELY(refs_))
--refs_;
else if (SPOT_LIKELY(id_ > 2) && SPOT_LIKELY(!saturated_))
// last reference to a node that is not a constant
destroy_aux();
}
/// \see formula::unbounded
static constexpr uint8_t unbounded()
{
return UINT8_MAX;
}
/// \see formula::ap
static const fnode* ap(const std::string& name);
/// \see formula::unop
static const fnode* unop(op o, const fnode* f);
/// \see formula::binop
static const fnode* binop(op o, const fnode* f, const fnode* g);
/// \see formula::multop
static const fnode* multop(op o, std::vector<const fnode*> l);
/// \see formula::bunop
static const fnode* bunop(op o, const fnode* f,
uint8_t min, uint8_t max = unbounded());
/// \see formula::nested_unop_range
static const fnode* nested_unop_range(op uo, op bo, unsigned min,
unsigned max, const fnode* f);
/// \see formula::kind
op kind() const
{
return op_;
}
/// \see formula::kindstr
std::string kindstr() const;
/// \see formula::is
/// @{
bool is(op o) const
{
return op_ == o;
}
bool is(op o1, op o2) const
{
return op_ == o1 || op_ == o2;
}
bool is(op o1, op o2, op o3) const
{
return op_ == o1 || op_ == o2 || op_ == o3;
}
bool is(op o1, op o2, op o3, op o4) const
{
return op_ == o1 || op_ == o2 || op_ == o3 || op_ == o4;
}
bool is(std::initializer_list<op> l) const
{
const fnode* n = this;
for (auto o: l)
{
if (!n->is(o))
return false;
n = n->nth(0);
}
return true;
}
/// @}
/// \see formula::get_child_of
const fnode* get_child_of(op o) const
{
if (op_ != o)
return nullptr;
if (SPOT_UNLIKELY(size_ != 1))
report_get_child_of_expecting_single_child_node();
return nth(0);
}
/// \see formula::get_child_of
const fnode* get_child_of(std::initializer_list<op> l) const
{
auto c = this;
for (auto o: l)
{
c = c->get_child_of(o);
if (c == nullptr)
return c;
}
return c;
}
/// \see formula::min
unsigned min() const
{
if (SPOT_UNLIKELY(op_ != op::FStar && op_ != op::Star))
report_min_invalid_arg();
return min_;
}
/// \see formula::max
unsigned max() const
{
if (SPOT_UNLIKELY(op_ != op::FStar && op_ != op::Star))
report_max_invalid_arg();
return max_;
}
/// \see formula::size
unsigned size() const
{
return size_;
}
/// \see formula::is_leaf
bool is_leaf() const
{
return size_ == 0;
}
/// \see formula::id
size_t id() const
{
return id_;
}
/// \see formula::begin
const fnode*const* begin() const
{
return children;
}
/// \see formula::end
const fnode*const* end() const
{
return children + size();
}
/// \see formula::nth
const fnode* nth(unsigned i) const
{
if (SPOT_UNLIKELY(i >= size()))
report_non_existing_child();
return children[i];
}
/// \see formula::ff
static const fnode* ff()
{
return ff_;
}
/// \see formula::is_ff
bool is_ff() const
{
return op_ == op::ff;
}
/// \see formula::tt
static const fnode* tt()
{
return tt_;
}
/// \see formula::is_tt
bool is_tt() const
{
return op_ == op::tt;
}
/// \see formula::eword
static const fnode* eword()
{
return ew_;
}
/// \see formula::is_eword
bool is_eword() const
{
return op_ == op::eword;
}
/// \see formula::is_constant
bool is_constant() const
{
return op_ == op::ff || op_ == op::tt || op_ == op::eword;
}
/// \see formula::is_Kleene_star
bool is_Kleene_star() const
{
if (op_ != op::Star)
return false;
return min_ == 0 && max_ == unbounded();
}
/// \see formula::one_star
static const fnode* one_star()
{
if (!one_star_)
one_star_ = bunop(op::Star, tt(), 0);
return one_star_;
}
/// \see formula::ap_name
const std::string& ap_name() const;
/// \see formula::dump
std::ostream& dump(std::ostream& os) const;
/// \see formula::all_but
const fnode* all_but(unsigned i) const;
/// \see formula::boolean_count
unsigned boolean_count() const
{
unsigned pos = 0;
unsigned s = size();
while (pos < s && children[pos]->is_boolean())
++pos;
return pos;
}
/// \see formula::boolean_operands
const fnode* boolean_operands(unsigned* width = nullptr) const;
/// \brief safety check for the reference counters
///
/// \return true iff the unicity map contains only the globally
/// pre-allocated formulas.
///
/// This is meant to be used as
/// \code
/// assert(spot::fnode::instances_check());
/// \endcode
/// at the end of a program.
static bool instances_check();
////////////////
// Properties //
////////////////
/// \see formula::is_boolean
bool is_boolean() const
{
return is_.boolean;
}
/// \see formula::is_sugar_free_boolean
bool is_sugar_free_boolean() const
{
return is_.sugar_free_boolean;
}
/// \see formula::is_in_nenoform
bool is_in_nenoform() const
{
return is_.in_nenoform;
}
/// \see formula::is_syntactic_stutter_invariant
bool is_syntactic_stutter_invariant() const
{
return is_.syntactic_si;
}
/// \see formula::is_sugar_free_ltl
bool is_sugar_free_ltl() const
{
return is_.sugar_free_ltl;
}
/// \see formula::is_ltl_formula
bool is_ltl_formula() const
{
return is_.ltl_formula;
}
/// \see formula::is_psl_formula
bool is_psl_formula() const
{
return is_.psl_formula;
}
/// \see formula::is_sere_formula
bool is_sere_formula() const
{
return is_.sere_formula;
}
/// \see formula::is_finite
bool is_finite() const
{
return is_.finite;
}
/// \see formula::is_eventual
bool is_eventual() const
{
return is_.eventual;
}
/// \see formula::is_universal
bool is_universal() const
{
return is_.universal;
}
/// \see formula::is_syntactic_safety
bool is_syntactic_safety() const
{
return is_.syntactic_safety;
}
/// \see formula::is_syntactic_guarantee
bool is_syntactic_guarantee() const
{
return is_.syntactic_guarantee;
}
/// \see formula::is_syntactic_obligation
bool is_syntactic_obligation() const
{
return is_.syntactic_obligation;
}
/// \see formula::is_syntactic_recurrence
bool is_syntactic_recurrence() const
{
return is_.syntactic_recurrence;
}
/// \see formula::is_syntactic_persistence
bool is_syntactic_persistence() const
{
return is_.syntactic_persistence;
}
/// \see formula::is_marked
bool is_marked() const
{
return !is_.not_marked;
}
/// \see formula::accepts_eword
bool accepts_eword() const
{
return is_.accepting_eword;
}
/// \see formula::has_lbt_atomic_props
bool has_lbt_atomic_props() const
{
return is_.lbt_atomic_props;
}
/// \see formula::has_spin_atomic_props
bool has_spin_atomic_props() const
{
return is_.spin_atomic_props;
}
private:
static size_t bump_next_id();
void setup_props(op o);
void destroy_aux() const;
[[noreturn]] static void report_non_existing_child();
[[noreturn]] static void report_too_many_children();
[[noreturn]] static void
report_get_child_of_expecting_single_child_node();
[[noreturn]] static void report_min_invalid_arg();
[[noreturn]] static void report_max_invalid_arg();
static const fnode* unique(fnode*);
// Destruction may only happen via destroy().
~fnode() = default;
// Disallow copies.
fnode(const fnode&) = delete;
fnode& operator=(const fnode&) = delete;
template<class iter>
fnode(op o, iter begin, iter end)
// Clang has some optimization where is it able to combine the
// 4 movb initializing op_,min_,max_,saturated_ into a single
// movl. Also it can optimize the three byte-comparisons of
// is_Kleene_star() into a single masked 32-bit comparison.
// The latter optimization triggers warnings from valgrind if
// min_ and max_ are not initialized. So to benefit from the
// initialization optimization and the is_Kleene_star()
// optimization in Clang, we always initialize min_ and max_
// with this compiler. Do not do it the rest of the time,
// since the optimization is not done.
: op_(o),
#if __llvm__
min_(0), max_(0),
#endif
saturated_(0)
{
size_t s = std::distance(begin, end);
if (SPOT_UNLIKELY(s > (size_t) UINT16_MAX))
report_too_many_children();
size_ = s;
auto pos = children;
for (auto i = begin; i != end; ++i)
*pos++ = *i;
setup_props(o);
}
fnode(op o, std::initializer_list<const fnode*> l)
: fnode(o, l.begin(), l.end())
{
}
fnode(op o, const fnode* f, uint8_t min, uint8_t max)
: op_(o), min_(min), max_(max), saturated_(0), size_(1)
{
children[0] = f;
setup_props(o);
}
static const fnode* ff_;
static const fnode* tt_;
static const fnode* ew_;
static const fnode* one_star_;
op op_; // operator
uint8_t min_; // range minimum (for star-like operators)
uint8_t max_; // range maximum;
mutable uint8_t saturated_;
uint16_t size_; // number of children
mutable uint16_t refs_ = 0; // reference count - 1;
size_t id_; // Also used as hash.
static size_t next_id_;
struct ltl_prop
{
// All properties here should be expressed in such a a way
// that property(f && g) is just property(f)&property(g).
// This allows us to compute all properties of a compound
// formula in one operation.
//
// For instance we do not use a property that says "has
// temporal operator", because it would require an OR between
// the two arguments. Instead we have a property that
// says "no temporal operator", and that one is computed
// with an AND between the arguments.
//
// Also choose a name that makes sense when prefixed with
// "the formula is".
bool boolean:1; // No temporal operators.
bool sugar_free_boolean:1; // Only AND, OR, and NOT operators.
bool in_nenoform:1; // Negative Normal Form.
bool syntactic_si:1; // LTL-X or siPSL
bool sugar_free_ltl:1; // No F and G operators.
bool ltl_formula:1; // Only LTL operators.
bool psl_formula:1; // Only PSL operators.
bool sere_formula:1; // Only SERE operators.
bool finite:1; // Finite SERE formulae, or Bool+X forms.
bool eventual:1; // Purely eventual formula.
bool universal:1; // Purely universal formula.
bool syntactic_safety:1; // Syntactic Safety Property.
bool syntactic_guarantee:1; // Syntactic Guarantee Property.
bool syntactic_obligation:1; // Syntactic Obligation Property.
bool syntactic_recurrence:1; // Syntactic Recurrence Property.
bool syntactic_persistence:1; // Syntactic Persistence Property.
bool not_marked:1; // No occurrence of EConcatMarked.
bool accepting_eword:1; // Accepts the empty word.
bool lbt_atomic_props:1; // Use only atomic propositions like p42.
bool spin_atomic_props:1; // Use only spin-compatible atomic props.
};
union
{
// Use an unsigned for fast computation of all properties.
unsigned props;
ltl_prop is_;
};
const fnode* children[1];
};
/// Order two atomic propositions.
SPOT_API
int atomic_prop_cmp(const fnode* f, const fnode* g);
struct formula_ptr_less_than_bool_first
{
bool
operator()(const fnode* left, const fnode* right) const
{
SPOT_ASSERT(left);
SPOT_ASSERT(right);
if (left == right)
return false;
// We want Boolean formulae first.
bool lib = left->is_boolean();
if (lib != right->is_boolean())
return lib;
// We have two Boolean formulae
if (lib)
{
bool lconst = left->is_constant();
if (lconst != right->is_constant())
return lconst;
if (!lconst)
{
auto get_literal = [](const fnode* f) -> const fnode*
{
if (f->is(op::Not))
f = f->nth(0);
if (f->is(op::ap))
return f;
return nullptr;
};
// Literals should come first
const fnode* litl = get_literal(left);
const fnode* litr = get_literal(right);
if (!litl != !litr)
return litl;
if (litl)
{
// And they should be sorted alphabetically
int cmp = atomic_prop_cmp(litl, litr);
if (cmp)
return cmp < 0;
}
}
}
size_t l = left->id();
size_t r = right->id();
if (l != r)
return l < r;
// Because the hash code assigned to each formula is the
// number of formulae constructed so far, it is very unlikely
// that we will ever reach a case were two different formulae
// have the same hash. This will happen only ever with have
// produced 256**sizeof(size_t) formulae (i.e. max_count has
// looped back to 0 and started over). In that case we can
// order two formulas by looking at their text representation.
// We could be more efficient and look at their AST, but it's
// not worth the burden. (Also ordering pointers is ruled out
// because it breaks the determinism of the implementation.)
std::ostringstream old;
left->dump(old);
std::ostringstream ord;
right->dump(ord);
return old.str() < ord.str();
}
};
#endif // SWIG
/// \ingroup tl_essentials
/// \brief Main class for temporal logic formula
class SPOT_API formula final
{
const fnode* ptr_;
public:
/// \brief Create a formula from an fnode.
///
/// This constructor is mainly for internal use, as spot::fnode
/// object should usually not be manipulated from user code.
explicit formula(const fnode* f) noexcept
: ptr_(f)
{
}
/// \brief Create a null formula.
///
/// This could be used to default-initialize a formula, however
/// null formula should be short lived: most algorithms and member
/// functions assume that formulas should not be null.
formula(std::nullptr_t) noexcept
: ptr_(nullptr)
{
}
/// \brief Default initialize a formula to nullptr.
formula() noexcept
: ptr_(nullptr)
{
}
/// Clone a formula.
formula(const formula& f) noexcept
: ptr_(f.ptr_)
{
if (ptr_)
ptr_->clone();
}
/// Move-construct a formula.
formula(formula&& f) noexcept
: ptr_(f.ptr_)
{
f.ptr_ = nullptr;
}
/// Destroy a formula.
~formula()
{
if (ptr_)
ptr_->destroy();
}
/// \brief Reset a formula to null
///
/// Note that null formula should be short lived: most algorithms
/// and member function assume that formulas should not be null.
/// Assigning nullptr to a formula can be useful when cleaning an
/// array of formula using multiple passes and marking some
/// formula as nullptr before actually erasing them.
const formula& operator=(std::nullptr_t)
{
this->~formula();
ptr_ = nullptr;
return *this;
}
const formula& operator=(const formula& f)
{
this->~formula();
if ((ptr_ = f.ptr_))
ptr_->clone();
return *this;
}
const formula& operator=(formula&& f) noexcept
{
std::swap(f.ptr_, ptr_);
return *this;
}
bool operator<(const formula& other) const noexcept
{
if (SPOT_UNLIKELY(!other.ptr_))
return false;
if (SPOT_UNLIKELY(!ptr_))
return true;
if (id() < other.id())
return true;
if (id() > other.id())
return false;
// The case where id()==other.id() but ptr_ != other.ptr_ is
// very unlikely (we would need to build more than UINT_MAX
// formulas), so let's just compare pointers, and ignore the
// fact that it may introduce some nondeterminism.
return ptr_ < other.ptr_;
}
bool operator<=(const formula& other) const noexcept
{
return *this == other || *this < other;
}
bool operator>(const formula& other) const noexcept
{
return !(*this <= other);
}
bool operator>=(const formula& other) const noexcept
{
return !(*this < other);
}
bool operator==(const formula& other) const noexcept
{
return other.ptr_ == ptr_;
}
bool operator==(std::nullptr_t) const noexcept
{
return ptr_ == nullptr;
}
bool operator!=(const formula& other) const noexcept
{
return other.ptr_ != ptr_;
}
bool operator!=(std::nullptr_t) const noexcept
{
return ptr_ != nullptr;
}
operator bool() const
{
return ptr_ != nullptr;
}
/////////////////////////
// Forwarded functions //
/////////////////////////
/// Unbounded constant to use as end of range for bounded operators.
static constexpr uint8_t unbounded()
{
return fnode::unbounded();
}
/// Build an atomic proposition.
static formula ap(const std::string& name)
{
return formula(fnode::ap(name));
}
/// \brief Build an atomic proposition from... an atomic proposition.
///
/// The only practical interest of this methods is for the Python
/// bindings, where ap() can therefore work both from string or
/// atomic propositions.
static formula ap(const formula& a)
{
if (SPOT_UNLIKELY(a.kind() != op::ap))
report_ap_invalid_arg();
return a;
}
/// \brief Build a unary operator.
/// \pre \a o should be one of op::Not, op::X, op::F, op::G,
/// op::Closure, op::NegClosure, op::NegClosureMarked.
/// @{
static formula unop(op o, const formula& f)
{
return formula(fnode::unop(o, f.ptr_->clone()));
}
#ifndef SWIG
static formula unop(op o, formula&& f)
{
return formula(fnode::unop(o, f.to_node_()));
}
#endif // !SWIG
/// @}
#ifdef SWIG
#define SPOT_DEF_UNOP(Name) \
static formula Name(const formula& f) \
{ \
return unop(op::Name, f); \
}
#else // !SWIG
#define SPOT_DEF_UNOP(Name) \
static formula Name(const formula& f) \
{ \
return unop(op::Name, f); \
} \
static formula Name(formula&& f) \
{ \
return unop(op::Name, std::move(f)); \
}
#endif // !SWIG
/// \brief Construct a negation
/// @{
SPOT_DEF_UNOP(Not);
/// @}
/// \brief Construct an X
/// @{
SPOT_DEF_UNOP(X);
/// @}
/// \brief Construct an X[n]
///
/// X[3]f = XXXf
static formula X(unsigned level, const formula& f)
{
return nested_unop_range(op::X, op::Or /* unused */, level, level, f);
}
#if SPOT_WANT_STRONG_X
/// \brief Construct a strong_X
/// @{
SPOT_DEF_UNOP(strong_X);
/// @}
/// \brief Construct a strong_X[n]
///
/// strong_X[3]f = strong_X strong_X strong_X f
static formula strong_X(unsigned level, const formula& f)
{
return nested_unop_range(op::strong_X, op::Or /* unused */,
level, level, f);
}
#endif
/// \brief Construct an F
/// @{
SPOT_DEF_UNOP(F);
/// @}
/// \brief Construct F[n:m]
///
/// F[2:3]a = XX(a | Xa)
/// F[2:$]a = XXFa
///
/// This syntax is from TSLF; the operator is called next_e![n..m] in PSL.
static formula F(unsigned min_level, unsigned max_level, const formula& f)
{
return nested_unop_range(op::X, op::Or, min_level, max_level, f);
}
/// \brief Construct G[n:m]
///
/// G[2:3]a = XX(a & Xa)
/// G[2:$]a = XXGa
///
/// This syntax is from TSLF; the operator is called next_a![n..m] in PSL.
static formula G(unsigned min_level, unsigned max_level, const formula& f)
{
return nested_unop_range(op::X, op::And, min_level, max_level, f);
}
/// \brief Construct a G
/// @{
SPOT_DEF_UNOP(G);
/// @}
/// \brief Construct a PSL Closure
/// @{
SPOT_DEF_UNOP(Closure);
/// @}
/// \brief Construct a negated PSL Closure
/// @{
SPOT_DEF_UNOP(NegClosure);
/// @}
/// \brief Construct a marked negated PSL Closure
/// @{
SPOT_DEF_UNOP(NegClosureMarked);
/// @}
/// \brief Construct first_match(sere)
/// @{
SPOT_DEF_UNOP(first_match);
/// @}
#undef SPOT_DEF_UNOP
/// @{
/// \brief Construct a binary operator
/// \pre \a o should be one of op::Xor, op::Implies, op::Equiv,
/// op::U, op::R, op::W, op::M, op::EConcat, op::EConcatMarked,
/// or op::UConcat.
static formula binop(op o, const formula& f, const formula& g)
{
return formula(fnode::binop(o, f.ptr_->clone(), g.ptr_->clone()));
}
#ifndef SWIG
static formula binop(op o, const formula& f, formula&& g)
{
return formula(fnode::binop(o, f.ptr_->clone(), g.to_node_()));
}
static formula binop(op o, formula&& f, const formula& g)
{
return formula(fnode::binop(o, f.to_node_(), g.ptr_->clone()));
}
static formula binop(op o, formula&& f, formula&& g)
{
return formula(fnode::binop(o, f.to_node_(), g.to_node_()));
}
///@}
#endif //SWIG
#ifdef SWIG
#define SPOT_DEF_BINOP(Name) \
static formula Name(const formula& f, const formula& g) \
{ \
return binop(op::Name, f, g); \
}
#else // !SWIG
#define SPOT_DEF_BINOP(Name) \
static formula Name(const formula& f, const formula& g) \
{ \
return binop(op::Name, f, g); \
} \
static formula Name(const formula& f, formula&& g) \
{ \
return binop(op::Name, f, std::move(g)); \
} \
static formula Name(formula&& f, const formula& g) \
{ \
return binop(op::Name, std::move(f), g); \
} \
static formula Name(formula&& f, formula&& g) \
{ \
return binop(op::Name, std::move(f), std::move(g)); \
}
#endif // !SWIG
/// \brief Construct an `Xor` formula
/// @{
SPOT_DEF_BINOP(Xor);
/// @}
/// \brief Construct an `->` formula
/// @{
SPOT_DEF_BINOP(Implies);
/// @}
/// \brief Construct an `<->` formula
/// @{
SPOT_DEF_BINOP(Equiv);
/// @}
/// \brief Construct a `U` formula
/// @{
SPOT_DEF_BINOP(U);
/// @}
/// \brief Construct an `R` formula
/// @{
SPOT_DEF_BINOP(R);
/// @}
/// \brief Construct a `W` formula
/// @{
SPOT_DEF_BINOP(W);
/// @}
/// \brief Construct an `M` formula
/// @{
SPOT_DEF_BINOP(M);
/// @}
/// \brief Construct a `<>->` PSL formula
/// @{
SPOT_DEF_BINOP(EConcat);
/// @}
/// \brief Construct a marked `<>->` PSL formula
/// @{
SPOT_DEF_BINOP(EConcatMarked);
/// @}
/// \brief Construct a `[]->` PSL formula
/// @{
SPOT_DEF_BINOP(UConcat);
/// @}
#undef SPOT_DEF_BINOP
/// \brief Construct an n-ary operator
///
/// \pre \a o should be one of op::Or, op::OrRat, op::And,
/// op::AndRat, op::AndNLM, op::Concat, op::Fusion.
/// @{
static formula multop(op o, const std::vector<formula>& l)
{
std::vector<const fnode*> tmp;
tmp.reserve(l.size());
for (auto f: l)
if (f.ptr_)
tmp.emplace_back(f.ptr_->clone());
return formula(fnode::multop(o, std::move(tmp)));
}
#ifndef SWIG
static formula multop(op o, std::vector<formula>&& l)
{
std::vector<const fnode*> tmp;
tmp.reserve(l.size());
for (auto f: l)
if (f.ptr_)
tmp.emplace_back(f.to_node_());
return formula(fnode::multop(o, std::move(tmp)));
}
#endif // !SWIG
/// @}
#ifdef SWIG
#define SPOT_DEF_MULTOP(Name) \
static formula Name(const std::vector<formula>& l) \
{ \
return multop(op::Name, l); \
}
#else // !SWIG
#define SPOT_DEF_MULTOP(Name) \
static formula Name(const std::vector<formula>& l) \
{ \
return multop(op::Name, l); \
} \
\
static formula Name(std::vector<formula>&& l) \
{ \
return multop(op::Name, std::move(l)); \
}
#endif // !SWIG
/// \brief Construct an Or formula.
/// @{
SPOT_DEF_MULTOP(Or);
/// @}
/// \brief Construct an Or SERE.
/// @{
SPOT_DEF_MULTOP(OrRat);
/// @}
/// \brief Construct an And formula.
/// @{
SPOT_DEF_MULTOP(And);
/// @}
/// \brief Construct an And SERE.
/// @{
SPOT_DEF_MULTOP(AndRat);
/// @}
/// \brief Construct a non-length-matching And SERE.
/// @{
SPOT_DEF_MULTOP(AndNLM);
/// @}
/// \brief Construct a Concatenation SERE.
/// @{
SPOT_DEF_MULTOP(Concat);
/// @}
/// \brief Construct a Fusion SERE.
/// @{
SPOT_DEF_MULTOP(Fusion);
/// @}
#undef SPOT_DEF_MULTOP
/// \brief Define a bounded unary-operator (i.e. star-like)
///
/// \pre \a o should be op::Star or op::FStar.
/// @{
static formula bunop(op o, const formula& f,
uint8_t min = 0U,
uint8_t max = unbounded())
{
return formula(fnode::bunop(o, f.ptr_->clone(), min, max));
}
#ifndef SWIG
static formula bunop(op o, formula&& f,
uint8_t min = 0U,
uint8_t max = unbounded())
{
return formula(fnode::bunop(o, f.to_node_(), min, max));
}
#endif // !SWIG
///@}
#if SWIG
#define SPOT_DEF_BUNOP(Name) \
static formula Name(const formula& f, \
uint8_t min = 0U, \
uint8_t max = unbounded()) \
{ \
return bunop(op::Name, f, min, max); \
}
#else // !SWIG
#define SPOT_DEF_BUNOP(Name) \
static formula Name(const formula& f, \
uint8_t min = 0U, \
uint8_t max = unbounded()) \
{ \
return bunop(op::Name, f, min, max); \
} \
static formula Name(formula&& f, \
uint8_t min = 0U, \
uint8_t max = unbounded()) \
{ \
return bunop(op::Name, std::move(f), min, max); \
}
#endif
/// \brief Create SERE for f[*min..max]
/// @{
SPOT_DEF_BUNOP(Star);
/// @}
/// \brief Create SERE for f[:*min..max]
///
/// This operator is a generalization of the (+) operator
/// defined by Dax et al. \cite dax.09.atva
/// @{
SPOT_DEF_BUNOP(FStar);
/// @}
#undef SPOT_DEF_BUNOP
/// \brief Nested operator construction (syntactic sugar).
///
/// Build between min and max nested uo, and chose between the
/// different numbers with bo.
///
/// For instance nested_unup_range(op::X, op::Or, 2, 4, a) returns
/// XX(a | X(a | Xa)).
///
/// For `max==unbounded()`, \a uo is repeated \a min times, and
/// its child is set to `F(a)` if \a bo is `op::Or` or to `G(a)`
/// otherwise.
static const formula nested_unop_range(op uo, op bo, unsigned min,
unsigned max, formula f)
{
return formula(fnode::nested_unop_range(uo, bo, min, max,
f.ptr_->clone()));
}
/// \brief Create a SERE equivalent to b[->min..max]
///
/// The operator does not exist: it is handled as syntactic sugar
/// by the parser and the printer. This function is used by the
/// parser to create the equivalent SERE.
static formula sugar_goto(const formula& b, uint8_t min, uint8_t max);
/// Create the SERE b[=min..max]
///
/// The operator does not exist: it is handled as syntactic sugar
/// by the parser and the printer. This function is used by the
/// parser to create the equivalent SERE.
static formula sugar_equal(const formula& b, uint8_t min, uint8_t max);
/// Create the SERE a ##[n:m] b
///
/// This ##[n:m] operator comes from SVA. When n=m, it is simply
/// written ##n.
///
/// The operator does not exist in Spot it is handled as syntactic
/// sugar by the parser. This function is used by the parser to
/// create the equivalent SERE using PSL operators.
///
/// The rewriting rules depends on the values of a, n, and b.
/// If n≥1 `a ##[n:m] b` is encoded as `a;1[*n-1,m-1];b`.
/// Otherwise:
/// * `a ##[0:0] b` is encoded as `a:b`,
/// * For m>0, `a ##[0:m] b` is encoded as
/// - `a:(1[*0:m];b)` is `a` rejects `[*0]`,
/// - `(a;1[*0:m]):b` is `b` rejects `[*0]`,
/// - `(a:b) | (a;1[*0:m-1];b)` is `a` and `b` accept `[*0]`.
///
/// The left operand can also be missing, in which case
/// `##[n:m] b` is rewritten as `1[*n:m];b`.
/// @{
static formula sugar_delay(const formula& a, const formula& b,
unsigned min, unsigned max);
static formula sugar_delay(const formula& b,
unsigned min, unsigned max);
/// @}
#ifndef SWIG
/// \brief Return the underlying pointer to the formula.
///
/// It is not recommended to call this function, which is
/// mostly meant for internal use.
///
/// By calling this function you take ownership of the fnode
/// instance pointed by this formula instance, and should take
/// care of calling its destroy() methods once you are done with
/// it. Otherwise the fnode will be leaked.
const fnode* to_node_()
{
auto tmp = ptr_;
ptr_ = nullptr;
return tmp;
}
#endif
/// Return top-most operator.
op kind() const
{
return ptr_->kind();
}
/// Return the name of the top-most operator.
std::string kindstr() const
{
return ptr_->kindstr();
}
/// Return true if the formula is of kind \a o.
bool is(op o) const
{
return ptr_->is(o);
}
#ifndef SWIG
/// Return true if the formula is of kind \a o1 or \a o2.
bool is(op o1, op o2) const
{
return ptr_->is(o1, o2);
}
/// Return true if the formula is of kind \a o1 or \a o2 or \a o3
bool is(op o1, op o2, op o3) const
{
return ptr_->is(o1, o2, o3);
}
/// Return true if the formula is of kind \a o1 or \a o2 or \a o3
/// or \a a4.
bool is(op o1, op o2, op o3, op o4) const
{
return ptr_->is(o1, o2, o3, o4);
}
/// Return true if the formulas nests all the operators in \a l.
bool is(std::initializer_list<op> l) const
{
return ptr_->is(l);
}
#endif
/// \brief Remove operator \a o and return the child.
///
/// This works only for unary operators.
formula get_child_of(op o) const
{
auto f = ptr_->get_child_of(o);
if (f)
f->clone();
return formula(f);
}
#ifndef SWIG
/// \brief Remove all operators in \a l and return the child.
///
/// This works only for a list of unary operators.
/// For instance if \c f is a formula for XG(a U b),
/// then <code>f.get_child_of({op::X, op::G})</code>
/// will return the subformula a U b.
formula get_child_of(std::initializer_list<op> l) const
{
auto f = ptr_->get_child_of(l);
if (f)
f->clone();
return formula(f);
}
#endif
/// \brief Return start of the range for star-like operators.
///
/// \pre The formula should have kind op::Star or op::FStar.
unsigned min() const
{
return ptr_->min();
}
/// \brief Return end of the range for star-like operators.
///
/// \pre The formula should have kind op::Star or op::FStar.
unsigned max() const
{
return ptr_->max();
}
/// Return the number of children.
unsigned size() const
{
return ptr_->size();
}
/// \brief Whether the formula is a leaf.
///
/// Leaves are formulas without children. They are either
/// constants (true, false, empty word) or atomic propositions.
bool is_leaf() const
{
return ptr_->is_leaf();
}
/// \brief Return the id of a formula.
///
/// Can be used as a hash number.
///
/// The id is almost unique as it is an unsigned number
/// incremented for each formula construction, and the number may
/// wrap around zero. If this is used for ordering, make sure to
/// deal with equality
size_t id() const
{
return ptr_->id();
}
#ifndef SWIG
/// Allow iterating over children
class SPOT_API formula_child_iterator final
{
const fnode*const* ptr_;
public:
formula_child_iterator()
: ptr_(nullptr)
{
}
formula_child_iterator(const fnode*const* f)
: ptr_(f)
{
}
bool operator==(formula_child_iterator o)
{
return ptr_ == o.ptr_;
}
bool operator!=(formula_child_iterator o)
{
return ptr_ != o.ptr_;
}
formula operator*()
{
return formula((*ptr_)->clone());
}
formula_child_iterator operator++()
{
++ptr_;
return *this;
}
formula_child_iterator operator++(int)
{
auto tmp = *this;
++ptr_;
return tmp;
}
};
/// Allow iterating over children
formula_child_iterator begin() const
{
return ptr_->begin();
}
/// Allow iterating over children
formula_child_iterator end() const
{
return ptr_->end();
}
/// Return children number \a i
formula operator[](unsigned i) const
{
return formula(ptr_->nth(i)->clone());
}
#endif
/// Return the false constant.
static formula ff()
{
return formula(fnode::ff());
}
/// Whether the formula is the false constant.
bool is_ff() const
{
return ptr_->is_ff();
}
/// Return the true constant.
static formula tt()
{
return formula(fnode::tt());
}
/// Whether the formula is the true constant.
bool is_tt() const
{
return ptr_->is_tt();
}
/// Return the empty word constant.
static formula eword()
{
return formula(fnode::eword());
}
/// Whether the formula is the empty word constant.
bool is_eword() const
{
return ptr_->is_eword();
}
/// Whether the formula is op::ff, op::tt, or op::eword.
bool is_constant() const
{
return ptr_->is_constant();
}
/// \brief Test whether the formula represent a Kleene star
///
/// That is, it should be of kind op::Star, with min=0 and
/// max=unbounded().
bool is_Kleene_star() const
{
return ptr_->is_Kleene_star();
}
/// \brief Return a copy of the formula 1[*].
static formula one_star()
{
return formula(fnode::one_star()->clone());
}
/// \brief Whether the formula is an atomic proposition or its
/// negation.
bool is_literal()
{
return (is(op::ap) ||
// If f is in nenoform, Not can only occur in front of
// an atomic proposition. So this way we do not have
// to check the type of the child.
(is(op::Not) && is_boolean() && is_in_nenoform()));
}
/// \brief Print the name of an atomic proposition.
///
/// \pre the formula should be of kind op::ap.
const std::string& ap_name() const
{
return ptr_->ap_name();
}
/// \brief Print the formula for debugging
///
/// In addition to the operator and children, this also display
/// the formula's unique id, and its reference count.
std::ostream& dump(std::ostream& os) const
{
return ptr_->dump(os);
}
/// \brief clone this formula, omitting child \a i
///
/// \pre The current node should be an n-ary operator such as
/// op::And, op::AndRat, op::AndNLM, op::Or, op::OrRat,
/// op::Concat, or op::Fusion.
formula all_but(unsigned i) const
{
return formula(ptr_->all_but(i));
}
/// \brief number of Boolean children
///
/// \pre The current node should be an n-ary operator such as
/// op::And, op::AndRat, op::AndNLM, op::Or, or op::OrRat.
///
/// Note that the children of an n-ary operator are always sorted
/// when the node is constructed, and such that Boolean children
/// appear at the beginning. This function therefore return the
/// number of the first non-Boolean child if it exists.
unsigned boolean_count() const
{
return ptr_->boolean_count();
}
/// \brief return a clone of the current node, restricted to its
/// Boolean children
///
/// \pre The current node should be an n-ary operator such as
/// op::And, op::AndRat, op::AndNLM, op::Or, or op::OrRat.
///
/// On a formula such as And({a,b,c,d,F(e),G(f)}), this returns
/// And({a,b,c,d}). If \a width is not nullptr, it is set the the
/// number of Boolean children gathered. Note that the children
/// of an n-ary operator are always sorted when the node is
/// constructed, and such that Boolean children appear at the
/// beginning. \a width would therefore give the number of the
/// first non-Boolean child if it exists.
formula boolean_operands(unsigned* width = nullptr) const
{
return formula(ptr_->boolean_operands(width));
}
#define SPOT_DEF_PROP(Name) \
bool Name() const \
{ \
return ptr_->Name(); \
}
////////////////
// Properties //
////////////////
/// Whether the formula use only boolean operators.
SPOT_DEF_PROP(is_boolean);
/// Whether the formula use only AND, OR, and NOT operators.
SPOT_DEF_PROP(is_sugar_free_boolean);
/// \brief Whether the formula is in negative normal form.
///
/// A formula is in negative normal form if the not operators
/// occur only in front of atomic propositions.
SPOT_DEF_PROP(is_in_nenoform);
/// Whether the formula is syntactically stutter_invariant
SPOT_DEF_PROP(is_syntactic_stutter_invariant);
/// Whether the formula avoids the F and G operators.
SPOT_DEF_PROP(is_sugar_free_ltl);
/// Whether the formula uses only LTL operators.
SPOT_DEF_PROP(is_ltl_formula);
/// Whether the formula uses only PSL operators.
SPOT_DEF_PROP(is_psl_formula);
/// Whether the formula uses only SERE operators.
SPOT_DEF_PROP(is_sere_formula);
/// \brief Whether a SERE describes a finite language, or an LTL
/// formula uses no temporal operator but X.
SPOT_DEF_PROP(is_finite);
/// \brief Whether the formula is purely eventual.
///
/// Pure eventuality formulae are defined in
///
/// A word that satisfies a pure eventuality can be prefixed by
/// anything and still satisfies the formula.
/// \cite etessami.00.concur
SPOT_DEF_PROP(is_eventual);
/// \brief Whether a formula is purely universal.
///
/// Purely universal formulae are defined in
///
/// Any (non-empty) suffix of a word that satisfies a purely
/// universal formula also satisfies the formula.
/// \cite etessami.00.concur
SPOT_DEF_PROP(is_universal);
/// Whether a PSL/LTL formula is syntactic safety property.
SPOT_DEF_PROP(is_syntactic_safety);
/// Whether a PSL/LTL formula is syntactic guarantee property.
SPOT_DEF_PROP(is_syntactic_guarantee);
/// Whether a PSL/LTL formula is syntactic obligation property.
SPOT_DEF_PROP(is_syntactic_obligation);
/// Whether a PSL/LTL formula is syntactic recurrence property.
SPOT_DEF_PROP(is_syntactic_recurrence);
/// Whether a PSL/LTL formula is syntactic persistence property.
SPOT_DEF_PROP(is_syntactic_persistence);
/// \brief Whether the formula has an occurrence of EConcatMarked
/// or NegClosureMarked
SPOT_DEF_PROP(is_marked);
/// Whether the formula accepts [*0].
SPOT_DEF_PROP(accepts_eword);
/// \brief Whether the formula has only LBT-compatible atomic
/// propositions.
///
/// LBT only supports atomic propositions of the form p1, p12,
/// etc.
SPOT_DEF_PROP(has_lbt_atomic_props);
/// \brief Whether the formula has spin-compatible atomic
/// propositions.
///
/// In Spin 5 (and hence ltl2ba, ltl3ba, ltl3dra), atomic
/// propositions should start with a lowercase letter, and can
/// then consist solely of alphanumeric characters and underscores.
///
/// \see spot::is_spin_ap()
SPOT_DEF_PROP(has_spin_atomic_props);
#undef SPOT_DEF_PROP
/// \brief Clone this node after applying \a trans to its children.
///
/// Any additional argument is passed to trans.
template<typename Trans, typename... Args>
formula map(Trans trans, Args&&... args)
{
switch (op o = kind())
{
case op::ff:
case op::tt:
case op::eword:
case op::ap:
return *this;
case op::Not:
case op::X:
#if SPOT_HAS_STRONG_X
case op::strong_X:
#endif
case op::F:
case op::G:
case op::Closure:
case op::NegClosure:
case op::NegClosureMarked:
case op::first_match:
return unop(o, trans((*this)[0], std::forward<Args>(args)...));
case op::Xor:
case op::Implies:
case op::Equiv:
case op::U:
case op::R:
case op::W:
case op::M:
case op::EConcat:
case op::EConcatMarked:
case op::UConcat:
{
formula tmp = trans((*this)[0], std::forward<Args>(args)...);
return binop(o, tmp,
trans((*this)[1], std::forward<Args>(args)...));
}
case op::Or:
case op::OrRat:
case op::And:
case op::AndRat:
case op::AndNLM:
case op::Concat:
case op::Fusion:
{
std::vector<formula> tmp;
tmp.reserve(size());
for (auto f: *this)
tmp.emplace_back(trans(f, std::forward<Args>(args)...));
return multop(o, std::move(tmp));
}
case op::Star:
case op::FStar:
return bunop(o, trans((*this)[0], std::forward<Args>(args)...),
min(), max());
}
SPOT_UNREACHABLE();
}
/// \brief Apply \a func to each subformula.
///
/// This does a simple DFS without checking for duplicate
/// subformulas. If \a func returns true, the children of the
/// current node are skipped.
///
/// Any additional argument is passed to \a func when it is
/// invoked.
template<typename Func, typename... Args>
void traverse(Func func, Args&&... args)
{
if (func(*this, std::forward<Args>(args)...))
return;
for (auto f: *this)
f.traverse(func, std::forward<Args>(args)...);
}
private:
#ifndef SWIG
[[noreturn]] static void report_ap_invalid_arg();
#endif
};
/// Print the properties of formula \a f on stream \a out.
SPOT_API
std::ostream& print_formula_props(std::ostream& out, const formula& f,
bool abbreviated = false);
/// List the properties of formula \a f.
SPOT_API
std::list<std::string> list_formula_props(const formula& f);
/// Print a formula.
SPOT_API
std::ostream& operator<<(std::ostream& os, const formula& f);
}
#ifndef SWIG
namespace std
{
template <>
struct hash<spot::formula>
{
size_t operator()(const spot::formula& x) const noexcept
{
return x.id();
}
};
}
#endif