* src/taalgos/stats.hh, src/taalgos/stats.cc: Compute statistics for a automaton. * src/ta/ta.hh, src/ta/ta.cc: Abstract representation of a Testing Automata(TA) * src/ta/taexplicit.hh, src/ta/taexplicit.cc: Explicit representation of a Testing Automata (TA) * src/taalgos/dotty.cc: Print a TA in dot format. * src/taalgos/reachiter.hh, src/taalgos/reachiter.cc: Iterate over all reachable states of a TA * src/taalgos/sba2ta.cc: implements the construction of a TA from a BA (Buchi Automata) * src/tgbatest/ltl2tgba.cc: add commands to test the TA implementation * src/taalgos/emptinessta.hh, src/taalgos/emptinessta.cc: implementation of the TA emptiness-check algorithm * src/ta/taproduct.hh, src/ta/taproduct.cc: representation of the product (automaton) between a TA and a Kripke structure. * src/ta/Makefile.am, src/taalgos/Makefile.am: add them
619 lines
20 KiB
C++
619 lines
20 KiB
C++
// Copyright (C) 2008 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
|
|
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
|
// Université Pierre et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
// #define TRACE
|
|
|
|
#include <iostream>
|
|
#ifdef TRACE
|
|
#define trace std::clog
|
|
#else
|
|
#define trace while (0) std::clog
|
|
#endif
|
|
|
|
#include "emptinessta.hh"
|
|
#include "misc/memusage.hh"
|
|
#include <math.h>
|
|
|
|
namespace spot
|
|
{
|
|
|
|
ta_check::ta_check(const ta* a, option_map o) :
|
|
a_(a), o_(o)
|
|
{
|
|
is_full_2_pass_ = o.get("is_full_2_pass", 0);
|
|
}
|
|
|
|
ta_check::~ta_check()
|
|
{
|
|
|
|
}
|
|
|
|
bool
|
|
ta_check::check()
|
|
{
|
|
|
|
// We use five main data in this algorithm:
|
|
|
|
// * h: a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
numbered_state_heap* h =
|
|
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
|
|
|
// * num: the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
int num = 1;
|
|
|
|
// * todo: the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a ta_succ_iterator
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
// * init: the set of the depth-first search initial states
|
|
std::stack<spot::state*> init_set;
|
|
|
|
Sgi::hash_map<const state*, std::string, state_ptr_hash, state_ptr_equal>
|
|
colour;
|
|
|
|
trace
|
|
<< "PASS 1" << std::endl;
|
|
//const std::string WHITE = "W";
|
|
//const std::string GREY = "G";
|
|
//const std::string BLUE = "B";
|
|
//const std::string BLACK = "BK";
|
|
|
|
Sgi::hash_map<const state*, std::set<const state*, state_ptr_less_than>,
|
|
state_ptr_hash, state_ptr_equal> liveset;
|
|
|
|
std::stack<spot::state*> livelock_roots;
|
|
|
|
const ta::states_set_t init_states_set = a_->get_initial_states_set();
|
|
ta::states_set_t::const_iterator it;
|
|
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
|
|
{
|
|
state* init_state = (*it);
|
|
init_set.push(init_state);
|
|
//colour[init_state] = WHITE;
|
|
|
|
}
|
|
|
|
while (!init_set.empty())
|
|
{
|
|
// Setup depth-first search from initial states.
|
|
|
|
{
|
|
state* init = dynamic_cast<state*> (init_set.top());
|
|
init_set.pop();
|
|
|
|
numbered_state_heap::state_index_p h_init = h->find(init);
|
|
|
|
if (h_init.first)
|
|
continue;
|
|
|
|
h->insert(init, ++num);
|
|
scc.push(num);
|
|
|
|
ta_succ_iterator* iter = a_->succ_iter(init);
|
|
iter->first();
|
|
todo.push(pair_state_iter(init, iter));
|
|
//colour[init] = GREY;
|
|
inc_depth();
|
|
|
|
//push potential root of live-lock accepting cycle
|
|
if (a_->is_livelock_accepting_state(init))
|
|
livelock_roots.push(init);
|
|
|
|
}
|
|
|
|
while (!todo.empty())
|
|
{
|
|
|
|
state* curr = todo.top().first;
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
ta_succ_iterator* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
dec_depth();
|
|
trace
|
|
<< "PASS 1 : backtrack" << std::endl;
|
|
|
|
// fill rem with any component removed,
|
|
numbered_state_heap::state_index_p spi =
|
|
h->index(curr->clone());
|
|
assert(spi.first);
|
|
|
|
scc.rem().push_front(curr);
|
|
inc_depth();
|
|
|
|
// set the h value of the Backtracked state to negative value.
|
|
// colour[curr] = BLUE;
|
|
*spi.second = -std::abs(*spi.second);
|
|
|
|
// Backtrack livelock_roots.
|
|
if (!livelock_roots.empty() && !livelock_roots.top()->compare(
|
|
curr))
|
|
livelock_roots.pop();
|
|
|
|
// When backtracking the root of an SSCC, we must also
|
|
// remove that SSCC from the ROOT stacks. We must
|
|
// discard from H all reachable states from this SSCC.
|
|
assert(!scc.empty());
|
|
if (scc.top().index == std::abs(*spi.second))
|
|
{
|
|
// removing states
|
|
std::list<state*>::iterator i;
|
|
|
|
for (i = scc.rem().begin(); i != scc.rem().end(); ++i)
|
|
{
|
|
numbered_state_heap::state_index_p spi = h->index(
|
|
(*i)->clone());
|
|
assert(spi.first->compare(*i) == 0);
|
|
assert(*spi.second != -1);
|
|
*spi.second = -1;
|
|
//colour[*i] = BLACK;
|
|
|
|
}
|
|
dec_depth(scc.rem().size());
|
|
scc.pop();
|
|
}
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
continue;
|
|
}
|
|
|
|
// We have a successor to look at.
|
|
inc_transitions();
|
|
trace
|
|
<< "PASS 1: transition" << std::endl;
|
|
// Fetch the values destination state we are interested in...
|
|
state* dest = succ->current_state();
|
|
|
|
//may be Buchi accepting scc
|
|
scc.top().is_accepting = a_->is_accepting_state(curr)
|
|
&& !succ->is_stuttering_transition();
|
|
|
|
bool is_stuttering_transition = succ->is_stuttering_transition();
|
|
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
// Are we going to a new state?
|
|
numbered_state_heap::state_index_p spi = h->find(dest);
|
|
|
|
// Is this a new state?
|
|
if (!spi.first)
|
|
{
|
|
// Number it, stack it, and register its successors
|
|
// for later processing.
|
|
h->insert(dest, ++num);
|
|
scc.push(num);
|
|
|
|
ta_succ_iterator* iter = a_->succ_iter(dest);
|
|
iter->first();
|
|
todo.push(pair_state_iter(dest, iter));
|
|
//colour[dest] = GREY;
|
|
inc_depth();
|
|
|
|
//push potential root of live-lock accepting cycle
|
|
if (a_->is_livelock_accepting_state(dest)
|
|
&& !is_stuttering_transition)
|
|
livelock_roots.push(dest);
|
|
|
|
continue;
|
|
}
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (*spi.second == -1)
|
|
continue;
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SSCC. Any such
|
|
// non-dead SSCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SSCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SSCC.
|
|
//
|
|
// This merge is easy to do because the order of the SSCC in
|
|
// ROOT is ascending: we just have to merge all SSCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SSCC of S2 (called the "threshold").
|
|
int threshold = std::abs(*spi.second);
|
|
std::list<state*> rem;
|
|
bool acc = false;
|
|
|
|
while (threshold < scc.top().index)
|
|
{
|
|
assert(!scc.empty());
|
|
|
|
acc |= scc.top().is_accepting;
|
|
|
|
rem.splice(rem.end(), scc.rem());
|
|
scc.pop();
|
|
|
|
}
|
|
// Note that we do not always have
|
|
// threshold == scc.top().index
|
|
// after this loop, the SSCC whose index is threshold might have
|
|
// been merged with a lower SSCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SSCC.
|
|
scc.top().is_accepting |= acc;
|
|
|
|
scc.rem().splice(scc.rem().end(), rem);
|
|
if (scc.top().is_accepting)
|
|
{
|
|
clear(h, todo, init_set);
|
|
trace
|
|
<< "PASS 1: SUCCESS" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
//ADDLINKS
|
|
if (!is_full_2_pass_ && a_->is_livelock_accepting_state(curr)
|
|
&& is_stuttering_transition)
|
|
{
|
|
trace
|
|
<< "PASS 1: heuristic livelock detection " << std::endl;
|
|
const state* dest = spi.first;
|
|
std::set<const state*, state_ptr_less_than> liveset_dest =
|
|
liveset[dest];
|
|
|
|
std::set<const state*, state_ptr_less_than> liveset_curr =
|
|
liveset[curr];
|
|
|
|
int h_livelock_root = 0;
|
|
if (!livelock_roots.empty())
|
|
h_livelock_root = *(h->find((livelock_roots.top()))).second;
|
|
|
|
if (heuristic_livelock_detection(dest, h, h_livelock_root,
|
|
liveset_curr))
|
|
{
|
|
clear(h, todo, init_set);
|
|
return true;
|
|
}
|
|
|
|
std::set<const state*, state_ptr_less_than>::const_iterator it;
|
|
for (it = liveset_dest.begin(); it != liveset_dest.end(); it++)
|
|
{
|
|
const state* succ = (*it);
|
|
if (heuristic_livelock_detection(succ, h, h_livelock_root,
|
|
liveset_curr))
|
|
{
|
|
clear(h, todo, init_set);
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
clear(h, todo, init_set);
|
|
return livelock_detection(a_);
|
|
}
|
|
|
|
bool
|
|
ta_check::heuristic_livelock_detection(const state * u,
|
|
numbered_state_heap* h, int h_livelock_root, std::set<const state*,
|
|
state_ptr_less_than> liveset_curr)
|
|
{
|
|
numbered_state_heap::state_index_p hu = h->find(u);
|
|
|
|
if (*hu.second > 0) // colour[u] == GREY
|
|
{
|
|
|
|
if (*hu.second >= h_livelock_root)
|
|
{
|
|
trace
|
|
<< "PASS 1: heuristic livelock detection SUCCESS" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
liveset_curr.insert(u);
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bool
|
|
ta_check::livelock_detection(const ta* t)
|
|
{
|
|
// We use five main data in this algorithm:
|
|
|
|
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
|
|
|
|
|
// * h: a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
numbered_state_heap* h =
|
|
numbered_state_heap_hash_map_factory::instance()->build(); ///< Heap of visited states.
|
|
|
|
// * num: the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
|
|
trace
|
|
<< "PASS 2" << std::endl;
|
|
|
|
int num = 0;
|
|
|
|
// * todo: the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
// * init: the set of the depth-first search initial states
|
|
std::stack<spot::state*> init_set;
|
|
|
|
|
|
|
|
const ta::states_set_t init_states_set = a_->get_initial_states_set();
|
|
ta::states_set_t::const_iterator it;
|
|
for (it = init_states_set.begin(); it != init_states_set.end(); it++)
|
|
{
|
|
state* init_state = (*it);
|
|
init_set.push(init_state);
|
|
|
|
|
|
}
|
|
|
|
|
|
while (!init_set.empty())
|
|
{
|
|
// Setup depth-first search from initial states.
|
|
{
|
|
state* init = init_set.top();
|
|
init_set.pop();
|
|
numbered_state_heap::state_index_p h_init = h->find(init);
|
|
|
|
if (h_init.first)
|
|
continue;
|
|
|
|
h->insert(init, ++num);
|
|
sscc.push(num);
|
|
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
|
|
ta_succ_iterator* iter = t->succ_iter(init);
|
|
iter->first();
|
|
todo.push(pair_state_iter(init, iter));
|
|
inc_depth();
|
|
|
|
}
|
|
|
|
while (!todo.empty())
|
|
{
|
|
|
|
state* curr = todo.top().first;
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
ta_succ_iterator* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
dec_depth();
|
|
trace
|
|
<< "PASS 2 : backtrack" << std::endl;
|
|
|
|
// fill rem with any component removed,
|
|
numbered_state_heap::state_index_p spi =
|
|
h->index(curr->clone());
|
|
assert(spi.first);
|
|
|
|
sscc.rem().push_front(curr);
|
|
inc_depth();
|
|
|
|
// When backtracking the root of an SSCC, we must also
|
|
// remove that SSCC from the ROOT stacks. We must
|
|
// discard from H all reachable states from this SSCC.
|
|
assert(!sscc.empty());
|
|
if (sscc.top().index == *spi.second)
|
|
{
|
|
// removing states
|
|
std::list<state*>::iterator i;
|
|
|
|
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
|
|
{
|
|
numbered_state_heap::state_index_p spi = h->index(
|
|
(*i)->clone());
|
|
assert(spi.first->compare(*i) == 0);
|
|
assert(*spi.second != -1);
|
|
*spi.second = -1;
|
|
}
|
|
dec_depth(sscc.rem().size());
|
|
sscc.pop();
|
|
}
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
|
|
continue;
|
|
}
|
|
|
|
// We have a successor to look at.
|
|
inc_transitions();
|
|
trace
|
|
<< "PASS 2 : transition" << std::endl;
|
|
// Fetch the values destination state we are interested in...
|
|
state* dest = succ->current_state();
|
|
|
|
bool is_stuttering_transition = succ->is_stuttering_transition();
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
numbered_state_heap::state_index_p spi = h->find(dest);
|
|
|
|
// Is this a new state?
|
|
if (!spi.first)
|
|
{
|
|
|
|
// Are we going to a new state through a stuttering transition?
|
|
|
|
if (!is_stuttering_transition)
|
|
{
|
|
init_set.push(dest);
|
|
continue;
|
|
}
|
|
|
|
// Number it, stack it, and register its successors
|
|
// for later processing.
|
|
h->insert(dest, ++num);
|
|
sscc.push(num);
|
|
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
|
|
|
|
ta_succ_iterator* iter = t->succ_iter(dest);
|
|
iter->first();
|
|
todo.push(pair_state_iter(dest, iter));
|
|
inc_depth();
|
|
continue;
|
|
}
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (*spi.second == -1)
|
|
continue;
|
|
|
|
//self loop state
|
|
if (!curr->compare(spi.first))
|
|
{
|
|
state * self_loop_state = (curr);
|
|
|
|
if (t->is_livelock_accepting_state(self_loop_state))
|
|
{
|
|
clear(h, todo, init_set);
|
|
trace
|
|
<< "PASS 2: SUCCESS" << std::endl;
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SSCC. Any such
|
|
// non-dead SSCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SSCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SSCC.
|
|
//
|
|
// This merge is easy to do because the order of the SSCC in
|
|
// ROOT is ascending: we just have to merge all SSCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SSCC of S2 (called the "threshold").
|
|
int threshold = *spi.second;
|
|
std::list<state*> rem;
|
|
bool acc = false;
|
|
|
|
while (threshold < sscc.top().index)
|
|
{
|
|
assert(!sscc.empty());
|
|
|
|
acc |= sscc.top().is_accepting;
|
|
|
|
rem.splice(rem.end(), sscc.rem());
|
|
sscc.pop();
|
|
|
|
}
|
|
// Note that we do not always have
|
|
// threshold == sscc.top().index
|
|
// after this loop, the SSCC whose index is threshold might have
|
|
// been merged with a lower SSCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SSCC.
|
|
sscc.top().is_accepting |= acc;
|
|
|
|
sscc.rem().splice(sscc.rem().end(), rem);
|
|
if (sscc.top().is_accepting)
|
|
{
|
|
clear(h, todo, init_set);
|
|
trace
|
|
<< "PASS 2: SUCCESS" << std::endl;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
clear(h, todo, init_set);
|
|
return false;
|
|
}
|
|
|
|
void
|
|
ta_check::clear(numbered_state_heap* h, std::stack<pair_state_iter> todo,
|
|
std::stack<spot::state*> init_states)
|
|
{
|
|
|
|
set_states(states() + h->size());
|
|
|
|
while (!init_states.empty())
|
|
{
|
|
a_->free_state(init_states.top());
|
|
init_states.pop();
|
|
}
|
|
|
|
// Release all iterators in TODO.
|
|
while (!todo.empty())
|
|
{
|
|
delete todo.top().second;
|
|
todo.pop();
|
|
dec_depth();
|
|
}
|
|
delete h;
|
|
}
|
|
|
|
std::ostream&
|
|
ta_check::print_stats(std::ostream& os) const
|
|
{
|
|
// ecs_->print_stats(os);
|
|
os << states() << " unique states visited" << std::endl;
|
|
|
|
//TODO sscc;
|
|
os << scc.size() << " strongly connected components in search stack"
|
|
<< std::endl;
|
|
os << transitions() << " transitions explored" << std::endl;
|
|
os << max_depth() << " items max in DFS search stack" << std::endl;
|
|
return os;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
}
|