spot/src/tgbaalgos/eltl2tgba_lacim.cc
Damien Lefortier 8c0d1003b0 Start the ELTL translation (LACIM).
Merge all eltlast/ files into formula.hh (except automatop.hh).
2008-06-20 00:27:06 +02:00

188 lines
4.3 KiB
C++

// Copyright (C) 2008 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "eltlast/formula.hh"
#include "eltlvisit/lunabbrev.hh"
#include "eltlvisit/nenoform.hh"
#include "eltlvisit/destroy.hh"
#include "tgba/tgbabddconcretefactory.hh"
#include <cassert>
#include "eltl2tgba_lacim.hh"
namespace spot
{
namespace
{
using namespace eltl;
/// \brief Recursively translate a formula into a BDD.
class eltl_trad_visitor: public const_visitor
{
public:
eltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
: fact_(fact), root_(root)
{
}
virtual
~eltl_trad_visitor()
{
}
bdd
result()
{
return res_;
}
void
visit(const atomic_prop* node)
{
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
}
void
visit(const constant* node)
{
switch (node->val())
{
case constant::True:
res_ = bddtrue;
return;
case constant::False:
res_ = bddfalse;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* node)
{
switch (node->op())
{
case unop::Not:
{
res_ = bdd_not(recurse(node->child()));
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* node)
{
bdd f1 = recurse(node->first());
bdd f2 = recurse(node->second());
switch (node->op())
{
case binop::Xor:
res_ = bdd_apply(f1, f2, bddop_xor);
return;
case binop::Implies:
res_ = bdd_apply(f1, f2, bddop_imp);
return;
case binop::Equiv:
res_ = bdd_apply(f1, f2, bddop_biimp);
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* node)
{
int op = -1;
bool root = false;
switch (node->op())
{
case multop::And:
op = bddop_and;
res_ = bddtrue;
// When the root formula is a conjunction it's ok to
// consider all children as root formulae. This allows the
// root-G trick to save many more variable. (See the
// translation of G.)
root = root_;
break;
case multop::Or:
op = bddop_or;
res_ = bddfalse;
break;
}
assert(op != -1);
unsigned s = node->size();
for (unsigned n = 0; n < s; ++n)
{
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
}
}
void
visit (const automatop* node)
{
// FIXME.
(void) node;
}
bdd
recurse(const formula* f, bool root = false)
{
eltl_trad_visitor v(fact_, root);
f->accept(v);
return v.result();
}
private:
bdd res_;
tgba_bdd_concrete_factory& fact_;
bool root_;
};
} // anonymous
tgba_bdd_concrete*
eltl_to_tgba_lacim(const eltl::formula* f, bdd_dict* dict)
{
// Normalize the formula. We want all the negations on
// the atomic propositions. We also suppress logic
// abbreviations such as <=>, =>, or XOR, since they
// would involve negations at the BDD level.
const eltl::formula* f1 = eltl::unabbreviate_logic(f);
const eltl::formula* f2 = eltl::negative_normal_form(f1);
eltl::destroy(f1);
// Traverse the formula and draft the automaton in a factory.
tgba_bdd_concrete_factory fact(dict);
eltl_trad_visitor v(fact, true);
f2->accept(v);
eltl::destroy(f2);
fact.finish();
// Finally setup the resulting automaton.
return new tgba_bdd_concrete(fact, v.result());
}
}