spot/src/tgbaalgos/scc.cc
Alexandre Duret-Lutz 96a7a49c52 Store the scc_map_ as a vector instead of a std::map. There is no
point in using a map since the SCC are numbered in sequence.

* src/tgbaalgos/scc.hh (scc_map::relabel_component): Return the
number of the SCC instead of taking it as argument.
(scc_map::scc_num_): Delete this variable.  scc_map_.size() gives
the same information.
(scc_map::scc_map_type): Define using std::vector instead of
std::map.
* src/tgbaalgos/scc.cc: Adjust all uses.
2009-05-28 18:42:18 +02:00

444 lines
11 KiB
C++

// Copyright (C) 2008, 2009 Laboratoire de Recherche et Developpement de
// l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include <queue>
#include <set>
#include <iostream>
#include <sstream>
#include "scc.hh"
#include "tgba/bddprint.hh"
namespace spot
{
std::ostream&
scc_stats::dump(std::ostream& out) const
{
out << "total SCCs: " << scc_total << std::endl;
out << "accepting SCCs: " << acc_scc << std::endl;
out << "dead SCCs: " << dead_scc << std::endl;
out << "accepting paths: " << acc_paths << std::endl;
out << "dead paths: " << dead_paths << std::endl;
return out;
}
scc_map::scc_map(const tgba* aut)
: aut_(aut)
{
}
int
scc_map::initial() const
{
state* in = aut_->get_init_state();
hash_type::const_iterator i = h_.find(in);
assert(i != h_.end());
int val = i->second;
delete in;
return val;
}
const scc_map::succ_type&
scc_map::succ(int i) const
{
unsigned n = -i - 1;
assert(scc_map_.size() > n);
return scc_map_[n].succ;
}
bool
scc_map::accepting(int i) const
{
return acc_set_of(i) == aut_->all_acceptance_conditions();
}
const tgba*
scc_map::get_aut() const
{
return aut_;
}
int
scc_map::relabel_component()
{
assert(!root_.front().states.empty());
std::list<const state*>::iterator i;
int n = scc_map_.size();
n = -n - 1;
for (i = root_.front().states.begin(); i != root_.front().states.end(); ++i)
{
hash_type::iterator spi = h_.find(*i);
assert(spi != h_.end());
assert(spi->first == *i);
assert(spi->second > 0);
spi->second = n;
}
scc_map_.push_back(root_.front());
return n;
}
void
scc_map::build_map()
{
// Setup depth-first search from the initial state.
{
state* init = aut_->get_init_state();
num_ = 1;
h_.insert(std::make_pair(init, 1));
root_.push_front(scc(1));
arc_acc_.push(bddfalse);
arc_cond_.push(bddfalse);
tgba_succ_iterator* iter = aut_->succ_iter(init);
iter->first();
todo_.push(pair_state_iter(init, iter));
}
while (!todo_.empty())
{
assert(root_.size() == arc_acc_.size());
assert(root_.size() == arc_cond_.size());
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo_.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
const state* curr = todo_.top().first;
// Backtrack TODO_.
todo_.pop();
// Fill rem with any component removed, so that
// remove_component() does not have to traverse the SCC
// again.
hash_type::const_iterator spi = h_.find(curr);
assert(spi != h_.end());
root_.front().states.push_front(spi->first);
// When backtracking the root of an SCC, we must also
// remove that SCC from the ARC/ROOT stacks. We must
// discard from H all reachable states from this SCC.
assert(!root_.empty());
if (root_.front().index == spi->second)
{
assert(!arc_acc_.empty());
assert(arc_cond_.size() == arc_acc_.size());
bdd cond = arc_cond_.top();
arc_cond_.pop();
arc_acc_.pop();
int num = relabel_component();
root_.pop_front();
// Record the transition between the SCC being popped
// and the previous SCC.
if (!root_.empty())
root_.front().succ.insert(std::make_pair(num, cond));
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
// Fetch the values we are interested in...
const state* dest = succ->current_state();
bdd acc = succ->current_acceptance_conditions();
bdd cond = succ->current_condition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state?
hash_type::const_iterator spi = h_.find(dest);
if (spi == h_.end())
{
// Yes. Number it, stack it, and register its successors
// for later processing.
h_.insert(std::make_pair(dest, ++num_));
root_.push_front(scc(num_));
arc_acc_.push(acc);
arc_cond_.push(cond);
tgba_succ_iterator* iter = aut_->succ_iter(dest);
iter->first();
todo_.push(pair_state_iter(dest, iter));
continue;
}
// Have we reached a maximal SCC?
if (spi->second < 0)
{
int dest = spi->second;
// Record that there is a transition from this SCC to the
// dest SCC labelled with cond.
succ_type::iterator i = root_.front().succ.find(dest);
if (i == root_.front().succ.end())
root_.front().succ.insert(std::make_pair(dest, cond));
else
i->second |= cond;
continue;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SCC. Any such
// non-dead SCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SCC too. We are going to merge all states between
// this S1 and S2 into this SCC.
//
// This merge is easy to do because the order of the SCC in
// ROOT is ascending: we just have to merge all SCCs from the
// top of ROOT that have an index greater to the one of
// the SCC of S2 (called the "threshold").
int threshold = spi->second;
std::list<const state*> states;
succ_type succs;
cond_set conds;
conds.insert(cond);
while (threshold < root_.front().index)
{
assert(!root_.empty());
assert(!arc_acc_.empty());
assert(arc_acc_.size() == arc_cond_.size());
acc |= root_.front().acc;
acc |= arc_acc_.top();
states.splice(states.end(), root_.front().states);
succs.insert(root_.front().succ.begin(),
root_.front().succ.end());
conds.insert(arc_cond_.top());
conds.insert(root_.front().conds.begin(),
root_.front().conds.end());
root_.pop_front();
arc_acc_.pop();
arc_cond_.pop();
}
// Note that we do not always have
// threshold == root_.front().index
// after this loop, the SCC whose index is threshold might have
// been merged with a lower SCC.
// Accumulate all acceptance conditions, states, SCC
// successors, and conditions into the merged SCC.
root_.front().acc |= acc;
root_.front().states.splice(root_.front().states.end(), states);
root_.front().succ.insert(succs.begin(), succs.end());
root_.front().conds.insert(conds.begin(), conds.end());
}
}
int scc_map::scc_of_state(const state* s) const
{
hash_type::const_iterator i = h_.find(s);
assert(i != h_.end());
return i->second;
}
const scc_map::cond_set& scc_map::cond_set_of(int i) const
{
unsigned n = -i - 1;
assert(scc_map_.size() > n);
return scc_map_[n].conds;
}
bdd scc_map::acc_set_of(int i) const
{
unsigned n = -i - 1;
assert(scc_map_.size() > n);
return scc_map_[n].acc;
}
const std::list<const state*>& scc_map::states_of(int i) const
{
unsigned n = -i - 1;
assert(scc_map_.size() > n);
return scc_map_[n].states;
}
unsigned scc_map::scc_count() const
{
return scc_map_.size();
}
namespace
{
struct scc_recurse_data
{
scc_recurse_data() : acc_scc(0), dead_scc(0) {};
typedef std::map<int, unsigned> graph_counter;
graph_counter acc_paths;
graph_counter dead_paths;
unsigned acc_scc;
unsigned dead_scc;
};
bool scc_recurse(const scc_map& m, int state, scc_recurse_data& data)
{
const scc_map::succ_type& succ = m.succ(state);
bool accepting = m.accepting(state);
scc_map::succ_type::const_iterator it;
int acc_paths = 0;
int dead_paths = 0;
bool paths_accepting = false;
for (it = succ.begin(); it != succ.end(); ++it)
{
int dest = it->first;
bool path_accepting = scc_recurse(m, dest, data);
paths_accepting |= path_accepting;
if (path_accepting)
acc_paths += data.acc_paths[dest];
else
dead_paths += data.dead_paths[dest];
}
if (accepting)
{
++data.acc_scc;
if (!paths_accepting)
acc_paths = 1;
}
else if (!paths_accepting)
{
++data.dead_scc;
}
data.acc_paths[state] = acc_paths;
data.dead_paths[state] = dead_paths;
return accepting | paths_accepting;
}
}
scc_stats build_scc_stats(const scc_map& m)
{
scc_stats res;
res.scc_total = m.scc_count();
scc_recurse_data d;
int init = m.initial();
scc_recurse(m, init, d);
res.acc_scc = d.acc_scc;
res.dead_scc = d.dead_scc;
res.acc_paths = d.acc_paths[init];
res.dead_paths = d.dead_paths[init];
return res;
}
scc_stats
build_scc_stats(const tgba* a)
{
scc_map m(a);
m.build_map();
return build_scc_stats(m);
}
std::ostream&
dump_scc_dot(const scc_map& m, std::ostream& out, bool verbose)
{
out << "digraph G {\n 0 [label=\"\", style=invis, height=0]" << std::endl;
int start = m.initial();
out << " 0 -> " << -start << std::endl;
typedef std::set<int> seen_map;
seen_map seen;
seen.insert(start);
std::queue<int> q;
q.push(start);
while (!q.empty())
{
int state = q.front();
q.pop();
const scc_map::cond_set& cs = m.cond_set_of(state);
std::ostringstream ostr;
ostr << -state;
if (verbose)
{
size_t n = m.states_of(state).size();
ostr << " (" << n << " state";
if (n > 1)
ostr << "s";
ostr << ")\\naccs=";
bdd_print_accset(ostr, m.get_aut()->get_dict(),
m.acc_set_of(state));
ostr << "\\nconds=[";
for (scc_map::cond_set::const_iterator i = cs.begin();
i != cs.end(); ++i)
{
if (i != cs.begin())
ostr << ", ";
bdd_print_formula(ostr, m.get_aut()->get_dict(), *i);
}
ostr << "]";
}
std::cout << " " << -state << " [shape=box,"
<< (m.accepting(state) ? "style=bold," : "")
<< "label=\"" << ostr.str() << "\"]" << std::endl;
const scc_map::succ_type& succ = m.succ(state);
scc_map::succ_type::const_iterator it;
for (it = succ.begin(); it != succ.end(); ++it)
{
int dest = it->first;
bdd label = it->second;
out << " " << -state << " -> " << -dest
<< " [label=\"";
bdd_print_formula(out, m.get_aut()->get_dict(), label);
out << "\"]" << std::endl;
seen_map::const_iterator it = seen.find(dest);
if (it != seen.end())
continue;
seen.insert(dest);
q.push(dest);
}
}
out << "}" << std::endl;
return out;
}
std::ostream&
dump_scc_dot(const tgba* a, std::ostream& out, bool verbose)
{
scc_map m(a);
m.build_map();
return dump_scc_dot(m, out, verbose);
}
}