Rewrite as ... (couvreur99_check_result::accepting_cycle): ... this less complex implementation. (couvreur99_check_result::complete_cycle): Delete. * src/tgbatest/emptchke.test: More explicit examples.
305 lines
8.5 KiB
C++
305 lines
8.5 KiB
C++
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
// et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "ce.hh"
|
|
#include "tgba/bddprint.hh"
|
|
#include <map>
|
|
|
|
namespace spot
|
|
{
|
|
couvreur99_check_result::couvreur99_check_result
|
|
(const couvreur99_check_status* ecs,
|
|
const explicit_connected_component_factory* eccf)
|
|
: ecs_(ecs), eccf_(eccf)
|
|
{
|
|
}
|
|
|
|
tgba_run*
|
|
couvreur99_check_result::accepting_run()
|
|
{
|
|
run_ = new tgba_run;
|
|
|
|
assert(!ecs_->root.empty());
|
|
|
|
scc_stack::stack_type root = ecs_->root.s;
|
|
int comp_size = root.size();
|
|
// Transform the stack of connected component into an array.
|
|
explicit_connected_component** scc =
|
|
new explicit_connected_component*[comp_size];
|
|
for (int j = comp_size - 1; 0 <= j; --j)
|
|
{
|
|
scc[j] = eccf_->build();
|
|
scc[j]->index = root.top().index;
|
|
scc[j]->condition = root.top().condition;
|
|
root.pop();
|
|
}
|
|
assert(root.empty());
|
|
|
|
// Build the set of states for all SCCs.
|
|
numbered_state_heap_const_iterator* i = ecs_->h->iterator();
|
|
for (i->first(); !i->done(); i->next())
|
|
{
|
|
int index = i->get_index();
|
|
// Skip states from dead SCCs.
|
|
if (index < 0)
|
|
continue;
|
|
assert(index != 0);
|
|
|
|
// Find the SCC this state belongs to.
|
|
int j;
|
|
for (j = 1; j < comp_size; ++j)
|
|
if (index < scc[j]->index)
|
|
break;
|
|
scc[j - 1]->insert(i->get_state());
|
|
}
|
|
delete i;
|
|
|
|
numbered_state_heap::state_index_p spi =
|
|
ecs_->h->index(ecs_->aut->get_init_state());
|
|
assert(spi.first);
|
|
// This incomplete starting step will be overwritten later.
|
|
tgba_run::step s = { spi.first, bddtrue, bddfalse };
|
|
run_->prefix.push_front(s);
|
|
|
|
// We build a path trough each SCC in the stack. For the
|
|
// first SCC, the starting state is the initial state of the
|
|
// automaton. The destination state is the closest state
|
|
// from the next SCC. This destination state becomes the
|
|
// starting state when building a path through the next SCC.
|
|
for (int k = 0; k < comp_size - 1; ++k)
|
|
{
|
|
// FIFO for the breadth-first search.
|
|
// (we are looking for the closest state in the next SCC.)
|
|
std::deque<const state*> todo;
|
|
|
|
// Record the father of each state, while performing the BFS.
|
|
typedef std::map<const state*, tgba_run::step,
|
|
state_ptr_less_than> father_map;
|
|
father_map father;
|
|
|
|
// Initial state of the BFS.
|
|
const state* start = run_->prefix.back().s;
|
|
todo.push_back(start);
|
|
|
|
while (!todo.empty())
|
|
{
|
|
const state* src = todo.front();
|
|
todo.pop_front();
|
|
tgba_succ_iterator* i = ecs_->aut->succ_iter(src);
|
|
|
|
for (i->first(); !i->done(); i->next())
|
|
{
|
|
const state* dest = i->current_state();
|
|
|
|
// Are we leaving this SCC?
|
|
const state* h_dest = scc[k]->has_state(dest);
|
|
if (!h_dest)
|
|
{
|
|
// If we have found a state in the next SCC.
|
|
// Unwind the path and populate RUN_->PREFIX.
|
|
h_dest = scc[k+1]->has_state(dest);
|
|
if (h_dest)
|
|
{
|
|
tgba_run::steps seq;
|
|
|
|
// The condition and acceptance conditions
|
|
// for the transition leaving H_DEST will
|
|
// be overwritten later when we know them.
|
|
|
|
tgba_run::step s = { h_dest, bddtrue, bddfalse };
|
|
seq.push_front(s);
|
|
|
|
// Now unwind our track until we reach START.
|
|
tgba_run::step t =
|
|
{ src,
|
|
i->current_condition(),
|
|
i->current_acceptance_conditions() };
|
|
while (t.s->compare(start))
|
|
{
|
|
seq.push_front(t);
|
|
t = father[t.s];
|
|
}
|
|
assert(!run_->prefix.empty());
|
|
// Overwrite the incomplete starting step.
|
|
run_->prefix.back() = t;
|
|
|
|
// Append SEQ to RUN_->PREFIX.
|
|
run_->prefix.splice(run_->prefix.end(), seq);
|
|
|
|
// Exit this BFS for this SCC.
|
|
todo.clear();
|
|
break;
|
|
}
|
|
// Restrict the BFS to state inside the SCC.
|
|
delete dest;
|
|
continue;
|
|
}
|
|
|
|
if (father.find(h_dest) == father.end())
|
|
{
|
|
todo.push_back(h_dest);
|
|
tgba_run::step s = { src,
|
|
i->current_condition(),
|
|
i->current_acceptance_conditions() };
|
|
father[h_dest] = s;
|
|
}
|
|
}
|
|
delete i;
|
|
}
|
|
}
|
|
|
|
accepting_cycle(scc[comp_size - 1], run_->prefix.back().s,
|
|
scc[comp_size - 1]->condition);
|
|
run_->prefix.pop_back(); // this state belongs to the cycle.
|
|
|
|
for (int j = comp_size - 1; 0 <= j; --j)
|
|
delete scc[j];
|
|
delete[] scc;
|
|
|
|
// Clone every state in the run before returning it. (We didn't
|
|
// do that before in the algorithm, because it's easier to follow
|
|
// if every state manipulated is the instance in the hash table.)
|
|
for (tgba_run::steps::iterator i = run_->prefix.begin();
|
|
i != run_->prefix.end(); ++i)
|
|
i->s = i->s->clone();
|
|
for (tgba_run::steps::iterator i = run_->cycle.begin();
|
|
i != run_->cycle.end(); ++i)
|
|
i->s = i->s->clone();
|
|
|
|
return run_;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
struct triplet
|
|
{
|
|
const state* s; // Current state.
|
|
tgba_succ_iterator* iter; // Iterator to successor of the current state.
|
|
bdd acc; // All acceptance conditions traversed by
|
|
// the path so far.
|
|
|
|
triplet (const state* s, tgba_succ_iterator* iter, bdd acc)
|
|
: s(s), iter(iter), acc(acc)
|
|
{
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
void
|
|
couvreur99_check_result::accepting_cycle(const explicit_connected_component*
|
|
scc,
|
|
const state* start, bdd
|
|
acc_to_traverse)
|
|
{
|
|
// Compute an accepting cycle using successive BFS that are
|
|
// restarted from the point reached after we have discovered a
|
|
// transition with a new acceptance conditions.
|
|
//
|
|
// This idea is taken from Product<T>::findWitness in LBTT 1.1.2.
|
|
const state* substart = start;
|
|
do
|
|
{
|
|
// Records backlinks to parent state during the BFS.
|
|
// (This also stores the propositions of this link.)
|
|
std::map<const state*, tgba_run::step, state_ptr_less_than> father;
|
|
|
|
// BFS queue.
|
|
std::deque<const state*> todo;
|
|
|
|
// Initial state.
|
|
todo.push_back(substart);
|
|
|
|
while (!todo.empty())
|
|
{
|
|
const state* src = todo.front();
|
|
todo.pop_front();
|
|
tgba_succ_iterator* i = ecs_->aut->succ_iter(src);
|
|
for (i->first(); !i->done(); i->next())
|
|
{
|
|
const state* dest = i->current_state();
|
|
|
|
// Do not escape this SCC
|
|
const state* h_dest = scc->has_state(dest);
|
|
if (!h_dest)
|
|
{
|
|
delete dest;
|
|
continue;
|
|
}
|
|
|
|
bdd cond = i->current_condition();
|
|
bdd acc = i->current_acceptance_conditions();
|
|
tgba_run::step s = { src, cond, acc };
|
|
|
|
// If this new step diminish the number of acceptance
|
|
// conditions, record the path so far and start a new
|
|
// BFS for the remaining acceptance conditions.
|
|
//
|
|
// If we have already collected all acceptance conditions,
|
|
// we stop if we cycle back to the start of the cycle.
|
|
bdd less_acc = acc_to_traverse - acc;
|
|
if (less_acc != acc_to_traverse
|
|
|| (acc_to_traverse == bddfalse
|
|
&& h_dest == start))
|
|
{
|
|
acc_to_traverse = less_acc;
|
|
|
|
tgba_run::steps p;
|
|
|
|
while (s.s != substart)
|
|
{
|
|
p.push_front(s);
|
|
s = father[s.s];
|
|
}
|
|
p.push_front(s);
|
|
run_->cycle.splice(run_->cycle.end(), p);
|
|
|
|
// Exit this BFS, and start a new one at h_dest.
|
|
todo.clear();
|
|
substart = h_dest;
|
|
break;
|
|
}
|
|
|
|
// Common case: record backlinks and continue BFS
|
|
// for unvisited states.
|
|
if (father.find(h_dest) == father.end())
|
|
{
|
|
todo.push_back(h_dest);
|
|
father[h_dest] = s;
|
|
}
|
|
}
|
|
delete i;
|
|
}
|
|
}
|
|
while (acc_to_traverse != bddfalse || substart != start);
|
|
}
|
|
|
|
void
|
|
couvreur99_check_result::print_stats(std::ostream& os) const
|
|
{
|
|
ecs_->print_stats(os);
|
|
// FIXME: This is bogusly assuming run_ exists. (Even if we
|
|
// created it, the user might have delete it.)
|
|
os << run_->prefix.size() << " states in run_->prefix" << std::endl;
|
|
os << run_->cycle.size() << " states in run_->cycle" << std::endl;
|
|
}
|
|
|
|
}
|