spot/src/ltlast/multop.hh
Alexandre Duret-Lutz b37dc0bc90 ltlast: simplify with std::make_pair() and c++11's std::tuple
* src/ltlast/atomic_prop.cc, src/ltlast/atomic_prop.hh,
src/ltlast/automatop.cc, src/ltlast/automatop.hh, src/ltlast/binop.cc,
src/ltlast/binop.hh, src/ltlast/bunop.cc, src/ltlast/bunop.hh,
src/ltlast/multop.cc, src/ltlast/multop.hh, src/ltlast/unop.cc,
src/ltlast/unop.hh: Use std::tuple to replace nested std::pair,
simplify calls to std::map::erase, use auto and std::make_pair with
insert, and simplify the dump() method using a range for.
2014-02-12 14:08:24 +01:00

321 lines
10 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/// \file ltlast/multop.hh
/// \brief LTL multi-operand operators
#ifndef SPOT_LTLAST_MULTOP_HH
# define SPOT_LTLAST_MULTOP_HH
#include "refformula.hh"
#include <vector>
#include <map>
#include <iosfwd>
namespace spot
{
namespace ltl
{
/// \ingroup ltl_ast
/// \brief Multi-operand operators.
class SPOT_API multop : public ref_formula
{
public:
enum type { Or, OrRat, And, AndRat, AndNLM, Concat, Fusion };
/// List of formulae.
typedef std::vector<const formula*> vec;
/// \brief Build a spot::ltl::multop with two children.
///
/// If one of the children itself is a spot::ltl::multop
/// with the same type, it will be inlined. I.e., children
/// of that child will be added, and that child itself will
/// be destroyed. This allows incremental building of
/// n-ary ltl::multop.
///
/// This functions can perform slight optimizations and
/// may not return an ltl::multop object. See the other
/// instance function for the list of rewritings.
static const formula*
instance(type op, const formula* first, const formula* second);
/// \brief Build a spot::ltl::multop with many children.
///
/// Same as the other instance() function, but take a vector of
/// formulae as argument. This vector is acquired by the
/// spot::ltl::multop class, the caller should allocate it with
/// \c new, but not use it (especially not destroy it) after it
/// has been passed to spot::ltl::multop. Inside the vector,
/// null pointers are ignored.
///
/// Most operators (Or, OrRat, And, AndRat, Concat) are
/// associative, and are automatically inlined. Or, OrRat, And,
/// and AndRat are commutative, so their arguments are also
/// sorted, to ensure that "a & b" is equal to "b & a", also
/// duplicate arguments are removed.
///
/// Furthermore this function can perform slight optimizations
/// and may not return an ltl::multop object. For instance if
/// the vector contains only one unique element, this this
/// formula will be returned as-is. Neutral and absorbent element
/// are also taken care of. The following rewritings are performed
/// (the left patterns are rewritten as shown on the right):
///
/// - And(Exps1...,1,Exps2...) = And(Exps1...,Exps2...)
/// - And(Exps1...,0,Exps2...) = 0
/// - And(Exp) = Exp
/// - Or(Exps1...,1,Exps2...) = 1
/// - Or(Exps1...,0,Exps2...) = Or(Exps1...,Exps2...)
/// - Or(Exp) = Exp
/// - AndNLM(FExps1...,1,Exps2...) = AndNLM(Exps2...)
/// if Fexps1... accept [*0], and Exps2... don't.
/// - AndNLM(FExps1...,1,FExps2...) = 1
/// if Fexps1...,FExps2... all accept[*0].
/// - AndNLM(Exps1...,0,Exps2...) = 0
/// - AndNLM(Exps1...,[*0],Exps2...) = AndNLM(Exps1...,Exps2...)
/// - AndNLM(Exp) = Exp
/// - AndNLM(Exps1...,BoolExp1,Exps2...,BoolExp2,Exps3...) =
/// AndNLM(Exps1...,Exps2...,Exps3...,And(BoolExp1,BoolExp2))
/// - AndRat(Exps1...,0,Exps2...) = 0
/// - AndRat(Exps1...,BoolExp1,Exps2...,BoolExps2...) =
/// AndRat(Exps1...,Exps2...,And(BoolExp1,BoolExps2...))
/// - AndRat(Exps1...,[*0],Exps2...) = [*0] if all Expi accept [*0]
/// - AndRat(Exps1...,[*0],Exps2...) = 0 if some Expi reject [*0]
/// - AndRat(Exps1...,1[*],Exps2...) = AndRat(Exps1...,Exps2...)
/// - OrRat(Exps1...,0,Exps2...) = OrRat(Exps1...,Exps2...)
/// - OrRat(Exps1...,BoolExp1,Exps2...,BoolExps2...) =
/// OrRat(Exps1...,Exps2...,Or(BoolExp1,BoolExps2...))
/// - OrRat(Exps1...,1[*],Exps2...) = 1[*]
/// - Concat(Exps1...,0,Exps2...) = 0
/// - Concat(Exps1...,[*0],Exps2...) = Concat(Exps1...,Exps2...)
/// - Concat(Exps1...,FExps2...,1[*],FExps3...,Exps4) =
/// Concat(Exps1...,1[*],Exps4) if FExps2...FExps3... all accept [*0]
/// - Concat(Exp) = Exp
/// - Concat(Exps1...,E,E[*i..j],E[*k..l],Exps2...) =
/// Concat(Exps1...,E[*1+i+k..j+l],Exps2...) and similar forms
/// - Fusion(Exps1...1,Exps2...) = Fusion(Exps1...,Exps2...)
/// if at least one exp reject [*0]
/// - Fusion(Exps1...,0,Exps2...) = 0
/// - Fusion(Exps1...,[*0],Exps2...) = 0
/// - Fusion(Exp) = Exp
/// - Fusion(Exps1...,BoolExp1...BoolExpN,Exps2,Exps3...) =
/// Fusion(Exps1...,And(BoolExp1...BoolExpN),Exps2,Exps3...)
static const formula* instance(type op, vec* v);
virtual void accept(visitor& v) const;
/// Get the number of children.
unsigned size() const
{
return children_->size();
}
/// \brief Get the nth child.
///
/// Starting with \a n = 0.
const formula* nth(unsigned n) const
{
return (*children_)[n];
}
/// \brief construct a formula without the nth child.
///
/// If the formula \c f is <code>a|b|c|d</code> and <code>d</code>
/// is child number 2, then calling <code>f->all_but(2)</code> will
/// return a new formula <code>a|b|d</code>.
const formula* all_but(unsigned n) const;
/// \brief return the number of Boolean operands in the binop.
///
/// For instance if \c f <code>a|b|Xc|Gd</code>, this
/// returns 2.
unsigned boolean_count() const;
/// \brief return the Boolean part of the binop.
///
/// For instance if \c f <code>a|b|Xc|Gd</code>, this
/// returns <code>a|b</code>. Return 0 if there is no
/// Boolean operand.
///
/// If \a width is not null, it is filled with the number
/// of Boolean operands extracted (i.e., the result
/// of boolean_count())
const formula* boolean_operands(unsigned* width = 0) const;
/// Get the type of this operator.
type op() const
{
return op_;
}
/// Get the type of this operator, as a string.
const char* op_name() const;
/// Return a canonic representation of the atomic proposition
virtual std::string dump() const;
/// Number of instantiated multi-operand operators. For debugging.
static unsigned instance_count();
/// Dump all instances. For debugging.
static std::ostream& dump_instances(std::ostream& os);
protected:
typedef std::pair<type, vec*> key;
/// Comparison functor used internally by ltl::multop.
struct paircmp
{
bool
operator()(const key& p1, const key& p2) const
{
if (p1.first != p2.first)
return p1.first < p2.first;
return *p1.second < *p2.second;
}
};
typedef std::map<key, const multop*, paircmp> map;
static map instances;
multop(type op, vec* v);
virtual ~multop();
private:
type op_;
vec* children_;
};
/// \brief Cast \a f into a multop.
///
/// Cast \a f into a multop iff it is a multop instance. Return 0
/// otherwise. This is faster than \c dynamic_cast.
inline
const multop*
is_multop(const formula* f)
{
if (f->kind() != formula::MultOp)
return 0;
return static_cast<const multop*>(f);
}
/// \brief Cast \a f into a multop if it has type \a op.
///
/// Cast \a f into a multop iff it is a multop instance with operator \a op.
/// Returns 0 otherwise.
inline
const multop*
is_multop(const formula* f, multop::type op)
{
if (const multop* mo = is_multop(f))
if (mo->op() == op)
return mo;
return 0;
}
/// \brief Cast \a f into a multop if it has type \a op1 or \a op2.
///
/// Cast \a f into a multop iff it is a multop instance with
/// operator \a op1 or \a op2. Returns 0 otherwise.
inline
const multop*
is_multop(const formula* f, multop::type op1, multop::type op2)
{
if (const multop* mo = is_multop(f))
if (mo->op() == op1 || mo->op() == op2)
return mo;
return 0;
}
/// \brief Cast \a f into a multop if it is an And.
///
/// Return 0 otherwise.
inline
const multop*
is_And(const formula* f)
{
return is_multop(f, multop::And);
}
/// \brief Cast \a f into a multop if it is an AndRat.
///
/// Return 0 otherwise.
inline
const multop*
is_AndRat(const formula* f)
{
return is_multop(f, multop::AndRat);
}
/// \brief Cast \a f into a multop if it is an AndNLM.
///
/// Return 0 otherwise.
inline
const multop*
is_AndNLM(const formula* f)
{
return is_multop(f, multop::AndNLM);
}
/// \brief Cast \a f into a multop if it is an Or.
///
/// Return 0 otherwise.
inline
const multop*
is_Or(const formula* f)
{
return is_multop(f, multop::Or);
}
/// \brief Cast \a f into a multop if it is an OrRat.
///
/// Return 0 otherwise.
inline
const multop*
is_OrRat(const formula* f)
{
return is_multop(f, multop::OrRat);
}
/// \brief Cast \a f into a multop if it is a Concat.
///
/// Return 0 otherwise.
inline
const multop*
is_Concat(const formula* f)
{
return is_multop(f, multop::Concat);
}
/// \brief Cast \a f into a multop if it is a Fusion.
///
/// Return 0 otherwise.
inline
const multop*
is_Fusion(const formula* f)
{
return is_multop(f, multop::Fusion);
}
}
}
#endif // SPOT_LTLAST_MULTOP_HH