spot/doc/org/ltlmix.org
Alexandre Duret-Lutz e6ebbdf65f ltlfilt, ltlsynt, ltlmix: add a --part-file option
* bin/common_ioap.cc, bin/common_ioap.hh (read_part_file): New
function.
* bin/ltlfilt.cc, bin/ltlmix.cc, bin/ltlsynt.cc: Use it.
* doc/org/ltlfilt.org, doc/org/ltlmix.org, doc/org/ltlsynt.org:
Mention that new option, and improve the links to its description
in ltlsynt.org.
* NEWS: Mention the new option.
* tests/core/ltlfilt.test, tests/core/ltlmix.test,
tests/core/ltlsynt.test: Adjust test cases.
2024-09-04 16:09:31 +02:00

494 lines
18 KiB
Org Mode
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
#+TITLE: =ltlmix=
#+DESCRIPTION: Spot command-line tool for combining LTL formulas randomly
#+INCLUDE: setup.org
#+HTML_LINK_UP: tools.html
#+PROPERTY: header-args:sh :results verbatim :exports both
This tool creates new formulas by combining formulas randomly selected
from an input set of formulas. Some authors have argued that for some
tasks, like [[https://www.cs.rice.edu/~vardi/papers/time13.pdf][LTL satisfiability]], working with randomly generated
formulas is often easy, because random formulas tend to simplify
trivially. =ltlmix= allows you to take a set of formulas, usually
some handwritten, meaningful formulas, and combine those formulas to
build larger sets that are possibly more challenging.
Here is a very simple example that builds five formulas that are
Boolean combination of formulas taken from the set
$\{\mathsf{GF}a,\mathsf{FG}b,\mathsf{X}c\}$:
#+BEGIN_SRC sh :exports both
ltlmix -f GFa -f FGb -f Xc -n 5
#+END_SRC
#+RESULTS:
: !FGb xor !Xc
: !GFa -> !FGb
: FGb | (FGb -> Xc)
: FGb
: GFa & (FGb | Xc)
* Shape of the generated formulas
** Size of the syntax tree
For each formula that it generates, =ltlmix= constructs a random
syntax-tree of a certain size (5 by default) in which internal nodes
represent operators selected randomly from a list of operators.
Leaves of that tree are subformulas selected randomly from the set of
input formulas. As an example, the syntax tree of =!φ₁ xor !φ₂= has
size 5, and its leaves =φ₁= and =φ₂= will be taken randomly from the
set of input formulas.
The algorithm is actually the same as for =randltl=, except that
=randltl= uses random atomic propositions as leaves when =ltlmix= uses
random formulas.
The same input formula can be picked several times to be used on
multiple leaves of the tree. Note that because Spot implements some
trivial rewritings directly during the construction of any formula,
formulas like =FGb | !!FGb= (which correspond to a tree of size 5 in
the above example) cannot be represented: they are automatically
simplified to =FGb=. Similarly, something like =φ xor φ= will be
output as =0=.
The size of the tree can be changed using the =--tree-size= option.
#+BEGIN_SRC sh :exports both
for i in 1 2 3 4 5 6 7 8 9 10 11 12; do
ltlmix -fXa -fGb -fFc -fXd -fGe --tree-size=$i
done
#+END_SRC
#+RESULTS:
#+begin_example
Fc
!Xd
0
Ge xor !Fc
!Xd xor !Ge
!Xd xor (Fc | Xd)
!Ge
Ge xor (!Ge -> Gb)
Ge xor (!Xa -> !Fc)
(Ge & !Fc) xor (!Gb xor !Ge)
(Ge & !Fc) xor (!Gb xor (Gb | Fc))
(Ge & (Gb xor Xd)) xor (!Fc -> (Gb | Fc))
#+end_example
The above shows that while the size of the syntax tree generally grows
along with =--tree-size= there are several cases where it reduces
trivially.
** Operator priorities
It is possible to control the set of operators used in the generation.
The first step is to obtain that list of operators with =--dump-priorities=.
For instance:
#+BEGIN_SRC sh :exports both
ltlmix -fXa -fGb -fFc -fXd -fGe --dump-priorities
#+END_SRC
#+RESULTS:
#+begin_example
Use --boolean-priorities to set the following Boolean formula priorities:
sub 5
false 0
true 0
not 1
equiv 1
implies 1
xor 1
and 1
or 1
#+end_example
In the above list, =false= and =true= represent the Boolean constants:
those are usually undesirable when building random Boolean formulas,
especially with Spot's trivial rewritings. =sub= represents a random
formula drawn from the list of input formulas.
The above command shows that each operator has a weight, called
/priority/. When the priority is 0, the operator is never used. When
=ltlmix= generates a syntax tree of size N, it looks among all
operators that can be used at the root of such a tree, and performs a
weighted random selection. In other words, an operator with priority
=2= will be twice more likely to be selected than an operator with
priority =1=.
Those priorities can be changed with =--boolean-priorities= as in the
following example, which disables =xor= and makes =<->= thrice more
likely to appear.
#+BEGIN_SRC sh :exports both
for i in 1 2 3 4 5 6 7 8 9 10 11 12; do
ltlmix -fXa -fGb -fFc -fXd -fGe --tree-size=$i --boolean-prio='xor=0,equiv=3'
done
#+END_SRC
#+RESULTS:
#+begin_example
Fc
!Xd
1
Ge <-> !Fc
!Xd <-> !Ge
!Xd <-> (Fc | Xd)
Ge
Ge <-> (Gb <-> !Ge)
Ge <-> (!Fc <-> !Xa)
(Ge & !Fc) <-> (!Ge -> !Gb)
(Ge & !Fc) <-> ((Gb | Fc) -> !Gb)
(Ge & (Gb <-> Xd)) <-> ((Gb | Fc) <-> !Fc)
#+end_example
** Boolean or LTL syntax tree
By default, the syntax tree generated on top of the randomly selected
input formulas uses only Boolean operators.
Using option =-L= will use LTL operators instead.
#+BEGIN_SRC sh :exports both
ltlmix -fXa -fGb -fFc --tree-size=10 -L -n10
#+END_SRC
#+RESULTS:
#+begin_example
Gb R (XFc W 0)
!(Gb | !Xa)
1 U !X(0)
(Xa xor Gb) -> (GXa M Fc)
GFc M 1
(Fc U Gb) -> (0 R Xa)
!Gb <-> (Gb | GFc)
1
GFc | (1 U Xa)
!(Xa | GFc)
#+end_example
The following operators are used:
#+BEGIN_SRC sh :exports both
ltlmix -fXa -fGb -fFc -fXd -fGe -L --dump-priorities
#+END_SRC
#+RESULTS:
#+begin_example
Use --ltl-priorities to set the following LTL priorities:
sub 5
false 1
true 1
not 1
F 1
G 1
X 1
equiv 1
implies 1
xor 1
R 1
U 1
W 1
M 1
and 1
or 1
#+end_example
Note that in the LTL case, =false= and =true= can be generated by
default: when building leave, =alse= and =true= have the same
probability to be selected as any input formula.
example). He
* Randomizing atomic propositions with =-A= or =-P=
Options =-A= or =-P= can be used to change the atomic propositions
used in the input formulas. This works as follows: if option =-A N=
was given, every time an input formula φ is selected, its atomic
propositions are replaced by atomic propositions randomly selected in
a set of size $N$. If φ uses $i$ atomic propositions and $i\ge N$,
then those $i$ atomic proposition will be remapped to $i$ distinct
atomic propositions chosen randomly in that set. If $i>N$, some of
the new atomic propositions may replace several of the original atomic
propositions.
Option =-P N= is similar to =-A N=, except that the selected atomic
propositions can possibly be negated.
These options solve two problems:
- They lessen the issue that a formula selected several times can lead
to syntax tree such as =φ | φ | φ= that reduces to =φ=. Now, each
occurrence of =φ= as a chance to use different atomic propositions.
The larger =N= is, the more likely it is that these copies of φ
will be different.
- They allow combining formulas that had completely different sets of
atomic propositions, in such a way that they are now interdependent.
The smaller N is the more likely it is that subformulas will share
atomic propositions.
Here is that same example with a single formula, =GFa=, whose atomic
proposition will be randomly replaced by one of
$\{p_0,p_1,p_2,p_3,p_4\}$.
#+BEGIN_SRC sh :exports both
ltlmix -fGFa -A5 --tree-size=8 -n10
#+END_SRC
#+RESULTS:
#+begin_example
(GFp2 & GFp3) xor (!GFp0 xor GFp1)
(GFp4 -> GFp1) -> !GFp2
!GFp4 | ((GFp2 & GFp3) -> GFp2)
!GFp2 | (GFp3 <-> (GFp2 & GFp1))
!GFp0 | GFp4
!(GFp2 & GFp1) <-> (GFp3 xor GFp0)
(GFp2 xor GFp0) | (GFp4 -> !GFp0)
(GFp4 | !GFp3) -> GFp4
!GFp0 -> (GFp2 | GFp1)
!GFp1 <-> (!GFp2 xor !GFp1)
#+end_example
Here is a similar example, with polarized atomic propositions instead:
#+BEGIN_SRC sh :exports both
ltlmix -fGFa -P5 --tree-size=8 -n10
#+END_SRC
#+RESULTS:
#+begin_example
(GFp2 & GF!p3) xor (GFp4 -> !GF!p1)
(GFp4 | !GFp2) -> (GFp1 -> GF!p1)
!GF!p2 & (GF!p0 xor (GF!p0 -> GF!p3))
GFp1 <-> (GF!p3 | !GFp0)
GF!p1 & GFp0 & (GF!p3 xor !GF!p4)
(GF!p1 xor GF!p2) | (GF!p3 & !GF!p4)
!(GFp4 xor (!GF!p2 | !GF!p3))
GFp0 | (!GFp1 -> (GFp1 -> GF!p4))
GF!p1 xor (!GF!p2 | (GF!p1 <-> GFp0))
!((GF!p2 <-> GF!p4) & (GFp1 xor GF!p2))
#+end_example
* More serious examples
** Mixing the DAC patterns
The command [[file:genltl.org][=genltl --dac-pattern=]] will print a list of 55 LTL
formulas representing various specification patterns listed by [[https://doi.org/10.1145/302405.30267][Dwyer
et al. (FMSP'98)]]. Using =--stat=%x= to count the atomic propositions
in each formula, and some standard unix tools, we can compute that
they use at most 6 atomic propositions.
#+BEGIN_SRC sh :exports both
genltl --dac-pattern --stat=%x | sort -n | tail -n 1
#+END_SRC
#+RESULTS:
: 6
Based on this, we could decide to generate Boolean combination of
those formulas while replacing atomic propositions by literals built
out of a set of 10 atomic propositions (chosen larger than 6 to ensure
that each individual formula will still make sense after the change of
atomic propositions).
#+BEGIN_SRC sh :exports both
genltl --dac-pattern | ltlmix -n8 -P10
#+END_SRC
#+RESULTS:
: !G((p8 & F!p7) -> (!p4 U (!p7 | (!p2 & !p4 & X(!p4 U p1))))) xor !G(!p3 -> ((p4 & !p7) U (!p4 | ((p4 & p7) U (!p4 | ((p4 & !p7) U (!p4 | ((p4 & p7) U (!p4 | (!p7 W !p4) | Gp7)))))))))
: !G(!p3 -> Gp5) xor !G(!p7 -> G(p9 -> (!p5 & !p8 & X(!p5 U p2))))
: G(p6 -> ((!(!p1 & p7 & X(!p1 U (!p1 & !p3))) U (p1 | !p2)) | G!(p7 & XF!p3))) & (G((!p4 & XF!p5) -> XF(!p5 & F!p0)) <-> G((p5 & !p6) -> (p5 W (p5 & p7))))
: !G((p0 & p9) -> (!p7 W (!p0 | p4))) & !G((p1 & !p2) -> (!p8 W p2))
: ((Fp2 -> ((!p1 -> (!p2 U (p0 & !p2))) U p2)) -> G(p1 -> G(p9 -> (!p4 & p8 & X(!p4 U !p7))))) xor G(p1 -> Gp9)
: !G((p5 & !p9 & F!p5) -> ((!p8 -> (p5 U (!p0 & p5))) U !p5)) -> !G((p6 & p9) -> (!p7 W !p9))
: G((!p1 & !p2) -> (p9 W p1)) <-> (G(p5 -> G(p0 -> F!p4)) -> (Fp6 -> ((!p5 & !p6) U (p6 | ((p5 & !p6) U (p6 | ((!p5 & !p6) U (p6 | ((p5 & !p6) U (p6 | (!p5 U p6)))))))))))
: ((Fp1 -> ((p6 -> (!p1 U (!p1 & !p2 & X(!p1 U !p9)))) U p1)) <-> (F!p0 -> (p0 U (p0 & !p7 & X(p0 U !p9))))) | (Fp2 -> (p6 U (p2 | (p6 & !p7 & X(p6 U p1)))))
Now we might want to clean this list a bit by relabeling each formula
so is uses atomic propositions $\{p_0,p_1,...\}$ starting at 0 and without gap.
#+BEGIN_SRC sh :exports both
genltl --dac-pattern | ltlmix -n8 -P10 | ltlfilt --relabel=pnn
#+END_SRC
#+RESULTS:
: !G((p0 & F!p1) -> (!p2 U (!p1 | (!p2 & !p3 & X(!p2 U p4))))) xor !G(!p5 -> ((!p1 & p2) U (!p2 | ((p1 & p2) U (!p2 | ((!p1 & p2) U (!p2 | ((p1 & p2) U (!p2 | (!p1 W !p2) | Gp1)))))))))
: !G(!p0 -> Gp1) xor !G(!p2 -> G(p3 -> (!p1 & !p4 & X(!p1 U p5))))
: G(p0 -> ((!(!p1 & p2 & X(!p1 U (!p1 & !p3))) U (p1 | !p4)) | G!(p2 & XF!p3))) & (G((!p5 & XF!p6) -> XF(!p6 & F!p7)) <-> G((!p0 & p6) -> (p6 W (p2 & p6))))
: !G((p0 & p1) -> (!p2 W (!p0 | p3))) & !G((p4 & !p5) -> (!p6 W p5))
: ((Fp0 -> ((!p1 -> (!p0 U (!p0 & p2))) U p0)) -> G(p1 -> G(p3 -> (!p4 & p5 & X(!p4 U !p6))))) xor G(p1 -> Gp3)
: !G((p0 & !p1 & F!p0) -> ((!p2 -> (p0 U (p0 & !p3))) U !p0)) -> !G((p1 & p4) -> (!p5 W !p1))
: G((!p0 & !p1) -> (p2 W p0)) <-> (G(p3 -> G(p4 -> F!p5)) -> (Fp6 -> ((!p3 & !p6) U (p6 | ((p3 & !p6) U (p6 | ((!p3 & !p6) U (p6 | ((p3 & !p6) U (p6 | (!p3 U p6)))))))))))
: ((Fp0 -> ((p1 -> (!p0 U (!p0 & !p2 & X(!p0 U !p3)))) U p0)) <-> (F!p4 -> (p4 U (p4 & !p5 & X(p4 U !p3))))) | (Fp2 -> (p1 U (p2 | (p1 & !p5 & X(p1 U p0)))))
** Random conjunctions
Some benchmarks (e.g., [[https://www.cs.rice.edu/~vardi/papers/time13.pdf][for LTL satisfiability]]) are built as
conjunctions of $L$ random formulas picked from a set of basic
formulas. Each picked formula has its atomic propositions mapped to
random literals built from a subset of $m$ atomic variables.
Given a value for $m$, option =-P m= will achieve the second part of
the above description. To build a conjunction of $L$ formulas, we
need to ask for a tree of size $2L-1$ in which only the =and= operator
is allowed.
Here is an example with $L=10$ (hence =--tree-size=19=) and $m=50$.
The example uses a small set of three basic formulas
$\{\mathsf{G}a,\mathsf{F}a,\mathsf{X}a\}$ for illustration, but in
practice you should replace these =-f= options by =-F FILENAME=
pointing to a file containing all the input formulas to select from.
#+BEGIN_SRC sh :exports both
ltlmix -fGa -fFa -fXa -n10 -P50 \
--tree-size=19 --boolean-prio=not=0,or=0,xor=0,equiv=0,implies=0
#+END_SRC
#+RESULTS:
#+begin_example
Xp27 & F!p21 & G!p19 & X!p26 & Fp4 & Gp43 & Fp39 & Fp7
G!p28 & G!p30 & X!p34 & Fp21 & Gp3 & Fp6 & F!p18 & Xp5 & Fp8 & F!p12
X!p32 & Xp9 & Gp4 & Xp48 & F!p48 & X!p6 & Fp5 & Xp20 & Fp28 & Fp26
G!p46 & X!p14 & Fp29 & X!p36 & Fp12 & Xp47 & Fp42 & Gp14 & Fp19
G!p28 & Fp21 & Fp36 & F!p0 & G!p14 & Xp21 & F!p28 & G!p21 & Gp21 & Gp40
Gp3 & F!p48 & F!p28 & Xp7 & Gp8 & Xp42 & Gp0 & Xp36 & F!p2 & G!p0
Xp36 & Xp46 & F!p31 & Xp11 & Xp26 & G!p9 & F!p36 & X!p12 & Fp15 & Xp18
Xp9 & X!p33 & Fp44 & X!p13 & Gp37 & Xp19 & G!p43 & F!p34 & Gp36 & Gp10
Xp27 & Xp5 & Fp28 & Xp18 & G!p13 & Gp35 & Gp38 & G!p45 & G!p48 & Gp12
Xp7 & G!p48 & Xp14 & Fp24 & Xp43 & Fp47 & Fp14 & Gp30 & Xp23 & G!p31
#+end_example
Random conjunctions is common enough to have its own flag. Using =-C
N= will see the tree size to $2N-1$ and disable all operators but
=and=. The above command can therefore be reduced to
#+BEGIN_SRC sh :exports both
ltlmix -fGa -fFa -fXa -n10 -P50 -C10
#+END_SRC
#+RESULTS:
#+begin_example
Xp27 & F!p21 & G!p19 & X!p26 & Fp4 & Gp43 & Fp39 & Fp7
G!p28 & G!p30 & X!p34 & Fp21 & Gp3 & Fp6 & F!p18 & Xp5 & Fp8 & F!p12
X!p32 & Xp9 & Gp4 & Xp48 & F!p48 & X!p6 & Fp5 & Xp20 & Fp28 & Fp26
G!p46 & X!p14 & Fp29 & X!p36 & Fp12 & Xp47 & Fp42 & Gp14 & Fp19
G!p28 & Fp21 & Fp36 & F!p0 & G!p14 & Xp21 & F!p28 & G!p21 & Gp21 & Gp40
Gp3 & F!p48 & F!p28 & Xp7 & Gp8 & Xp42 & Gp0 & Xp36 & F!p2 & G!p0
Xp36 & Xp46 & F!p31 & Xp11 & Xp26 & G!p9 & F!p36 & X!p12 & Fp15 & Xp18
Xp9 & X!p33 & Fp44 & X!p13 & Gp37 & Xp19 & G!p43 & F!p34 & Gp36 & Gp10
Xp27 & Xp5 & Fp28 & Xp18 & G!p13 & Gp35 & Gp38 & G!p45 & G!p48 & Gp12
Xp7 & G!p48 & Xp14 & Fp24 & Xp43 & Fp47 & Fp14 & Gp30 & Xp23 & G!p31
#+end_example
Selecting 10 random conjuncts out of 3×50×2=300 possibilities has a
13.7% chance that at least 2 conjuncts will be identical (see [[https://en.wikipedia.org/wiki/Birthday_problem][Birthday
paradox]]), so because of Spot's trivial rewritings, some of the above
formulas may have fewer than 10 conjuncts.
** Random conjunctions for LTL synthesis
Generating formulas for LTL synthesis differs from LTL satisfiability
because we have to deal with two sets of atomic proposition: one set
for input, and one set for output.
[[https://www.ijcai.org/proceedings/2017/0189.pdf][Zhu et al. (IJCAI'17)]] generate their benchmark for LTL synthesis using
a setup similar to the above, except that when atomic proposition are
randomized, we must make sure not to change their input or output
nature.
They use small examples from the [[http://www.ist.tugraz.at/staff/jobstmann/lily/][Lily]] distribution as basic formulas
to combine. Spot can print those formulas using =genltl --lily=.
There are 23 of them, but we will limit ourselves to four of them for
illustrative purpose.
#+BEGIN_SRC sh :exports both
genltl --lily=8..11
#+END_SRC
#+RESULTS:
: GFi0 -> GFo0
: GFi0 -> (!o0 & G(!o0 -> ((!o0 U i0) & (i0 -> Fo0))) & GFo0)
: (GFi1 | Fi0) -> (GFo1 | Go0)
: !(G(i1 -> Fo0) & G(i0 -> Fo1))
Notice how these atomic propositions either start with =i= (for input)
or =o= for output. This allows Spot to infer their nature. For
instance, we could feed those directly to [[file:ltlsynt.org][=ltlsynt=]] to decide if they
are realizable:
#+BEGIN_SRC sh :exports both :epilogue true
genltl --lily=8..11 | ltlsynt --realizability
#+END_SRC
#+RESULTS:
: REALIZABLE
: REALIZABLE
: REALIZABLE
: UNREALIZABLE
When randomizing the atomic propositions in these formulas before
combining them, we want to replace each input (resp. output)
proposition by a random input (resp. output) proposition. This is
achieved by passing two numbers to =-A= or =-P=. In the case of [[https://www.ijcai.org/proceedings/2017/0189.pdf][Zhu
et al.]], they do not change the polarity of the proposition during
their generation, so we would use =-A= to mimic their setup.
Here are 6 random conjunctions of the above four patterns, in which
each input (resp. output) atomic proposition has been replaced by a
random input (resp. output) atomic proposition picked randomly in a
set of 5 (resp. 4).
#+BEGIN_SRC sh :exports both
genltl --lily=8..11 | ltlmix -A5,4 -C3 -n6
#+END_SRC
#+RESULTS:
: !(G(i3 -> Fo3) & G(i2 -> Fo2)) & (GFi2 -> (!o1 & GFo1 & G(!o1 -> ((!o1 U i2) & (i2 -> Fo1))))) & (GFi4 -> GFo1)
: (GFi2 -> (!o1 & GFo1 & G(!o1 -> ((!o1 U i2) & (i2 -> Fo1))))) & !(G(i0 -> Fo1) & G(i4 -> Fo3)) & (GFi4 -> (!o3 & GFo3 & G(!o3 -> ((i4 -> Fo3) & (!o3 U i4)))))
: (GFi3 -> (!o3 & GFo3 & G(!o3 -> ((i3 -> Fo3) & (!o3 U i3))))) & ((GFi2 | Fi3) -> (GFo0 | Go2)) & ((Fi0 | GFi2) -> (GFo3 | Go2))
: (GFi3 -> GFo2) & (GFi2 -> GFo0) & (GFi3 -> (!o0 & GFo0 & G(!o0 -> ((!o0 U i3) & (i3 -> Fo0)))))
: !(G(i3 -> Fo1) & G(i1 -> Fo3)) & !(G(i3 -> Fo0) & G(i0 -> Fo2)) & ((GFi0 | Fi3) -> (GFo0 | Go1))
: ((Fi1 | GFi4) -> (Go0 | GFo2)) & !(G(i0 -> Fo2) & G(i4 -> Fo1)) & !(G(i3 -> Fo2) & G(i1 -> Fo1))
#+BEGIN_SRC sh :exports both :epilogue true
genltl --lily=8..11 | ltlmix -A5,4 -C3 -n6 | ltlsynt --realizability
#+END_SRC
#+RESULTS:
: UNREALIZABLE
: UNREALIZABLE
: REALIZABLE
: UNREALIZABLE
: UNREALIZABLE
: UNREALIZABLE
Note that because one of the original pattern is unrealizable, any
conjunction involving it will be unrealizable. Even if we had only
realizable specifications to combine, the smaller the atomic
proposition sets are, the more likely the random conjuncts will be in
conflict. Therefore, increasing the number of atomic propositions to
chose from may help to get more realizable formulas.
#+BEGIN_SRC sh :exports both :epilogue true
genltl --lily=8..11 | ltlmix -A50,50 -C3 -n6 | ltlsynt -q
#+END_SRC
#+RESULTS:
: UNREALIZABLE
: UNREALIZABLE
: REALIZABLE
: REALIZABLE
: UNREALIZABLE
: UNREALIZABLE
When the original LTL synthesis specification formulas have atomic
proposition that do not start with =i= or =o=, options =--ins=,
=--outs=, or =--part-file= can be used to specify the nature of the
atomic propositions. These options work as [[file:ltlsynt.org::#input-options][=ltlsynt='s input options]].