* NEWS: document the rewrite * spot/twaalgos/determinize.cc: lots of code optimizations * tests/core/safra.test, tests/python/highlighting.ipynb, tests/python/simstate.py: Update tests
935 lines
28 KiB
C++
935 lines
28 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2015-2017 Laboratoire de Recherche et
|
|
// Développement de l'Epita.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <stack>
|
|
#include <utility>
|
|
#include <unordered_map>
|
|
#include <set>
|
|
#include <map>
|
|
|
|
|
|
#include <spot/misc/bddlt.hh>
|
|
#include <spot/twaalgos/sccinfo.hh>
|
|
#include <spot/twaalgos/determinize.hh>
|
|
#include <spot/twaalgos/degen.hh>
|
|
#include <spot/twaalgos/sccfilter.hh>
|
|
#include <spot/twaalgos/simulation.hh>
|
|
#include <spot/twaalgos/isdet.hh>
|
|
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
// forward declaration
|
|
struct safra_build;
|
|
}
|
|
|
|
class safra_state final
|
|
{
|
|
public:
|
|
// a helper method to check invariants
|
|
void
|
|
check() const
|
|
{
|
|
// do not refer to braces that do not exist
|
|
for (const auto& p : nodes_)
|
|
if (p.second >= 0)
|
|
if (((unsigned)p.second) >= braces_.size())
|
|
assert(false);
|
|
|
|
// braces_ describes the parenthood relation, -1 meaning toplevel
|
|
// so braces_[b] < b always, and -1 is the only negative number allowed
|
|
for (int b : braces_)
|
|
{
|
|
if (b < 0 && b != -1)
|
|
assert(false);
|
|
if (b >= 0 && braces_[b] > b)
|
|
assert(false);
|
|
}
|
|
|
|
// no unused braces
|
|
std::set<int> used_braces;
|
|
for (const auto& n : nodes_)
|
|
{
|
|
int b = n.second;
|
|
while (b >= 0)
|
|
{
|
|
used_braces.insert(b);
|
|
b = braces_[b];
|
|
}
|
|
}
|
|
assert(used_braces.size() == braces_.size());
|
|
}
|
|
|
|
public:
|
|
using state_t = unsigned;
|
|
using safra_node_t = std::pair<state_t, std::vector<int>>;
|
|
|
|
bool operator<(const safra_state&) const;
|
|
bool operator==(const safra_state&) const;
|
|
size_t hash() const;
|
|
|
|
// Print the number of states in each brace
|
|
// default constructor
|
|
safra_state(): safra_state(0) {}
|
|
safra_state(state_t state_number, bool acceptance_scc = false);
|
|
safra_state(safra_build&& s, unsigned c);
|
|
// Compute successor for transition ap
|
|
safra_state
|
|
compute_succ(const const_twa_graph_ptr& aut,
|
|
const bdd& ap,
|
|
const scc_info& scc,
|
|
const std::vector<bdd>& implications,
|
|
const std::vector<char>& is_connected,
|
|
bool use_scc,
|
|
bool use_simulation) const;
|
|
|
|
// each brace points to its parent.
|
|
// braces_[i] is the parent of i
|
|
// Note that braces_[i] < i, -1 stands for "no parent" (top-level)
|
|
std::vector<int> braces_;
|
|
std::vector<std::pair<state_t, int>> nodes_;
|
|
// FIXME this does not belong to the safra_state
|
|
unsigned color_;
|
|
};
|
|
|
|
namespace
|
|
{
|
|
struct hash_safra
|
|
{
|
|
size_t
|
|
operator()(const safra_state& s) const
|
|
{
|
|
return s.hash();
|
|
}
|
|
};
|
|
|
|
template<class T>
|
|
struct ref_wrap_equal
|
|
{
|
|
bool
|
|
operator()(const std::reference_wrapper<T>& x,
|
|
const std::reference_wrapper<T>& y) const
|
|
{
|
|
return std::equal_to<T>()(x.get(), y.get());
|
|
}
|
|
};
|
|
|
|
using power_set = std::unordered_map<safra_state, unsigned, hash_safra>;
|
|
|
|
std::string
|
|
nodes_to_string(const const_twa_graph_ptr& aut,
|
|
const safra_state& states);
|
|
|
|
// Given a certain transition_label, compute all the successors of a
|
|
// safra_state under that label, and return the new nodes in res.
|
|
class compute_succs final
|
|
{
|
|
const safra_state& src;
|
|
const const_twa_graph_ptr& aut;
|
|
const power_set& seen;
|
|
const scc_info& scc;
|
|
const std::vector<bdd>& implications;
|
|
const std::vector<char>& is_connected;
|
|
const std::vector<bdd>& all_bdds;
|
|
bool use_scc;
|
|
bool use_simulation;
|
|
bool use_stutter;
|
|
|
|
// to iterate on successors
|
|
std::vector<bdd>::const_iterator bddit;
|
|
safra_state ss;
|
|
public:
|
|
compute_succs(const safra_state& src,
|
|
const const_twa_graph_ptr& aut,
|
|
const power_set& seen,
|
|
const scc_info& scc,
|
|
const std::vector<bdd>& implications,
|
|
const std::vector<char>& is_connected,
|
|
const std::vector<bdd>& all_bdds,
|
|
bool use_scc,
|
|
bool use_simulation,
|
|
bool use_stutter)
|
|
: src(src)
|
|
, aut(aut)
|
|
, seen(seen)
|
|
, scc(scc)
|
|
, implications(implications)
|
|
, is_connected(is_connected)
|
|
, all_bdds(all_bdds)
|
|
, use_scc(use_scc)
|
|
, use_simulation(use_simulation)
|
|
, use_stutter(use_stutter)
|
|
{}
|
|
|
|
struct iterator
|
|
{
|
|
const compute_succs& cs_;
|
|
std::vector<bdd>::const_iterator bddit;
|
|
safra_state ss;
|
|
|
|
iterator(const compute_succs& c, std::vector<bdd>::const_iterator it)
|
|
: cs_(c)
|
|
, bddit(it)
|
|
{
|
|
compute_();
|
|
}
|
|
|
|
bool
|
|
operator!=(const iterator& other) const
|
|
{
|
|
return bddit != other.bddit;
|
|
}
|
|
|
|
iterator&
|
|
operator++()
|
|
{
|
|
++bddit;
|
|
compute_();
|
|
return *this;
|
|
}
|
|
// no need to implement postfix increment
|
|
|
|
bdd
|
|
cond() const
|
|
{
|
|
return *bddit;
|
|
}
|
|
|
|
const safra_state&
|
|
operator*() const
|
|
{
|
|
return ss;
|
|
}
|
|
const safra_state*
|
|
operator->() const
|
|
{
|
|
return &ss;
|
|
}
|
|
|
|
private:
|
|
void
|
|
compute_()
|
|
{
|
|
if (bddit == cs_.all_bdds.end())
|
|
return;
|
|
|
|
const bdd& ap = *bddit;
|
|
ss = cs_.src;
|
|
|
|
if (cs_.use_stutter && cs_.aut->prop_stutter_invariant())
|
|
{
|
|
bool stop = false;
|
|
std::deque<safra_state> path;
|
|
std::unordered_set<
|
|
std::reference_wrapper<const safra_state>,
|
|
hash_safra,
|
|
ref_wrap_equal<const safra_state>> states;
|
|
unsigned mincolor = -1U;
|
|
while (!stop)
|
|
{
|
|
path.emplace_back(std::move(ss));
|
|
auto i = states.insert(path.back());
|
|
assert(i.second);
|
|
ss = path.back().compute_succ(cs_.aut, ap, cs_.scc,
|
|
cs_.implications,
|
|
cs_.is_connected, cs_.use_scc,
|
|
cs_.use_simulation);
|
|
mincolor = std::min(ss.color_, mincolor);
|
|
stop = states.find(ss) != states.end();
|
|
}
|
|
|
|
// also insert last element (/!\ it thus appears twice in path)
|
|
path.emplace_back(std::move(ss));
|
|
const safra_state& loopstart = path.back();
|
|
bool in_seen = cs_.seen.find(ss) != cs_.seen.end();
|
|
unsigned tokeep = path.size()-1;
|
|
unsigned idx = path.size()-2;
|
|
// The loop is guaranteed to end, because path contains too
|
|
// occurrences of loopstart
|
|
while (!(loopstart == path[idx]))
|
|
{
|
|
// if path[tokeep] is already in seen, replace it with a
|
|
// smaller state also in seen.
|
|
if (in_seen && cs_.seen.find(path[idx]) != cs_.seen.end())
|
|
if (path[idx] < path[tokeep])
|
|
tokeep = idx;
|
|
|
|
// if path[tokeep] is not in seen, replace it either with a
|
|
// state in seen or with a smaller state
|
|
if (!in_seen)
|
|
{
|
|
if (cs_.seen.find(path[idx]) != cs_.seen.end())
|
|
{
|
|
tokeep = idx;
|
|
in_seen = true;
|
|
}
|
|
else if (path[idx] < path[tokeep])
|
|
tokeep = idx;
|
|
}
|
|
--idx;
|
|
}
|
|
// clean references to path before move (see next line)
|
|
states.clear();
|
|
// move is safe, no dangling references
|
|
ss = std::move(path[tokeep]);
|
|
ss.color_ = mincolor;
|
|
}
|
|
else
|
|
ss = cs_.src.compute_succ(cs_.aut, ap, cs_.scc, cs_.implications,
|
|
cs_.is_connected, cs_.use_scc,
|
|
cs_.use_simulation);
|
|
}
|
|
};
|
|
|
|
iterator
|
|
begin() const
|
|
{
|
|
return iterator(*this, all_bdds.begin());
|
|
}
|
|
iterator
|
|
end() const
|
|
{
|
|
return iterator(*this, all_bdds.end());
|
|
}
|
|
};
|
|
|
|
const char* const sub[10] =
|
|
{
|
|
"\u2080",
|
|
"\u2081",
|
|
"\u2082",
|
|
"\u2083",
|
|
"\u2084",
|
|
"\u2085",
|
|
"\u2086",
|
|
"\u2087",
|
|
"\u2088",
|
|
"\u2089",
|
|
};
|
|
|
|
std::string subscript(unsigned start)
|
|
{
|
|
std::string res;
|
|
do
|
|
{
|
|
res = sub[start % 10] + res;
|
|
start /= 10;
|
|
}
|
|
while (start);
|
|
return res;
|
|
}
|
|
|
|
// Returns true if lhs has a smaller nesting pattern than rhs
|
|
// If lhs and rhs are the same, return false.
|
|
// NB the nesting patterns are backwards.
|
|
bool nesting_cmp(const std::vector<int>& lhs,
|
|
const std::vector<int>& rhs)
|
|
{
|
|
unsigned m = std::min(lhs.size(), rhs.size());
|
|
auto lit = lhs.rbegin();
|
|
auto rit = rhs.rbegin();
|
|
for (unsigned i = 0; i != m; ++i)
|
|
{
|
|
if (*lit != *rit)
|
|
return *lit < *rit;
|
|
}
|
|
return lhs.size() > rhs.size();
|
|
}
|
|
|
|
// Used to remove all acceptance whose value is above or equal to max_acc
|
|
void remove_dead_acc(twa_graph_ptr& aut, unsigned max_acc)
|
|
{
|
|
assert(max_acc < 32);
|
|
unsigned mask = (1 << max_acc) - 1;
|
|
for (auto& t: aut->edges())
|
|
t.acc &= mask;
|
|
}
|
|
|
|
struct compare
|
|
{
|
|
bool
|
|
operator() (const safra_state::safra_node_t& lhs,
|
|
const safra_state::safra_node_t& rhs)
|
|
{
|
|
return lhs.second < rhs.second;
|
|
}
|
|
};
|
|
|
|
// Return the nodes sorted in ascending order
|
|
std::vector<safra_state::safra_node_t>
|
|
sorted_nodes(const safra_state& s)
|
|
{
|
|
std::vector<safra_state::safra_node_t> res;
|
|
for (const auto& n: s.nodes_)
|
|
{
|
|
int brace = n.second;
|
|
std::vector<int> tmp;
|
|
while (brace >= 0)
|
|
{
|
|
// FIXME is not there a smarter way?
|
|
tmp.insert(tmp.begin(), brace);
|
|
brace = s.braces_[brace];
|
|
}
|
|
res.emplace_back(n.first, std::move(tmp));
|
|
}
|
|
std::sort(res.begin(), res.end(), compare());
|
|
return res;
|
|
}
|
|
|
|
std::string
|
|
nodes_to_string(const const_twa_graph_ptr& aut,
|
|
const safra_state& states)
|
|
{
|
|
auto copy = sorted_nodes(states);
|
|
std::ostringstream os;
|
|
std::stack<int> s;
|
|
bool first = true;
|
|
for (const auto& n: copy)
|
|
{
|
|
auto it = n.second.begin();
|
|
// Find brace on top of stack in vector
|
|
// If brace is not present, then we close it as no other ones of that
|
|
// type will be found since we ordered our vector
|
|
while (!s.empty())
|
|
{
|
|
it = std::lower_bound(n.second.begin(), n.second.end(),
|
|
s.top());
|
|
if (it == n.second.end() || *it != s.top())
|
|
{
|
|
os << subscript(s.top()) << '}';
|
|
s.pop();
|
|
}
|
|
else
|
|
{
|
|
if (*it == s.top())
|
|
++it;
|
|
break;
|
|
}
|
|
}
|
|
// Add new braces
|
|
while (it != n.second.end())
|
|
{
|
|
os << '{' << subscript(*it);
|
|
s.push(*it);
|
|
++it;
|
|
first = true;
|
|
}
|
|
if (!first)
|
|
os << ' ';
|
|
os << aut->format_state(n.first);
|
|
first = false;
|
|
}
|
|
// Finish unwinding stack to print last braces
|
|
while (!s.empty())
|
|
{
|
|
os << subscript(s.top()) << '}';
|
|
s.pop();
|
|
}
|
|
return os.str();
|
|
}
|
|
|
|
std::vector<std::string>*
|
|
print_debug(const const_twa_graph_ptr& aut,
|
|
const power_set& states)
|
|
{
|
|
auto res = new std::vector<std::string>(states.size());
|
|
for (const auto& p: states)
|
|
(*res)[p.second] = nodes_to_string(aut, p.first);
|
|
return res;
|
|
}
|
|
|
|
// a helper class for building the successor of a safra_state
|
|
struct safra_build final
|
|
{
|
|
std::vector<int> braces_;
|
|
std::map<unsigned, int> nodes_;
|
|
|
|
safra_build(const std::vector<int>& b)
|
|
: braces_(b)
|
|
{}
|
|
|
|
bool
|
|
compare_braces(int a, int b)
|
|
{
|
|
std::vector<int> a_pattern;
|
|
std::vector<int> b_pattern;
|
|
a_pattern.reserve(a+1);
|
|
b_pattern.reserve(b+1);
|
|
while (a != b)
|
|
{
|
|
if (a > b)
|
|
{
|
|
a_pattern.emplace_back(a);
|
|
a = braces_[a];
|
|
}
|
|
else
|
|
{
|
|
b_pattern.emplace_back(b);
|
|
b = braces_[b];
|
|
}
|
|
}
|
|
return nesting_cmp(a_pattern, b_pattern);
|
|
}
|
|
|
|
// Used when creating the list of successors
|
|
// A new intermediate node is created with src's braces and with dst as id
|
|
// A merge is done if dst already existed in *this
|
|
void
|
|
update_succ(int brace, unsigned dst, const acc_cond::mark_t acc)
|
|
{
|
|
int newb = brace;
|
|
if (acc.count())
|
|
{
|
|
assert(acc.has(0) && acc.count() == 1 && "Only TBA are accepted");
|
|
// Accepting edges generate new braces: step A1
|
|
newb = braces_.size();
|
|
braces_.emplace_back(brace);
|
|
}
|
|
auto i = nodes_.emplace(dst, newb);
|
|
if (!i.second) // dst already exists
|
|
{
|
|
// Step A2: Only keep the smallest nesting pattern.
|
|
// Use nesting_cmp to compare nesting patterns.
|
|
if (compare_braces(newb, i.first->second))
|
|
{
|
|
i.first->second = newb;
|
|
}
|
|
else
|
|
{
|
|
if (newb != brace) // new brace was created but is not needed
|
|
braces_.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
// When a node a implies a node b, remove the node a.
|
|
void
|
|
merge_redundant_states(const std::vector<bdd>& implications,
|
|
const scc_info& scc,
|
|
const std::vector<char>& is_connected)
|
|
{
|
|
std::vector<unsigned> to_remove;
|
|
for (const auto& n1: nodes_)
|
|
for (const auto& n2: nodes_)
|
|
{
|
|
if (n1 == n2)
|
|
continue;
|
|
// index to see if there is a path from scc2 -> scc1
|
|
unsigned idx = scc.scc_count() * scc.scc_of(n2.first) +
|
|
scc.scc_of(n1.first);
|
|
if (!is_connected[idx] && bdd_implies(implications.at(n1.first),
|
|
implications.at(n2.first)))
|
|
to_remove.emplace_back(n1.first);
|
|
}
|
|
for (unsigned n: to_remove)
|
|
nodes_.erase(n);
|
|
}
|
|
|
|
// Return the emitted color, red or green
|
|
unsigned
|
|
finalize_construction()
|
|
{
|
|
unsigned red = -1U;
|
|
unsigned green = -1U;
|
|
// use std::vector<char> to avoid std::vector<bool>
|
|
// a char encodes several bools:
|
|
// * first bit says whether the brace is empty and red
|
|
// * second bit says whether the brace is green
|
|
// brackets removed from green pairs can be safely be marked as red,
|
|
// because their enclosing green has a lower number
|
|
// beware of pairs marked both as red and green: they are actually empty
|
|
constexpr char is_empty = 1;
|
|
constexpr char is_green = 2;
|
|
std::vector<char> empty_green(braces_.size(), 3);
|
|
|
|
for (const auto& n : nodes_)
|
|
if (n.second >= 0)
|
|
{
|
|
int brace = n.second;
|
|
// Step A4: For a brace to be green it must not contain states
|
|
// on its own.
|
|
empty_green[brace] &= ~is_green;
|
|
while (brace >= 0 && (empty_green[brace] & is_empty))
|
|
{
|
|
empty_green[brace] &= ~is_empty;
|
|
brace = braces_[brace];
|
|
}
|
|
}
|
|
// Step A4 Remove brackets within green pairs
|
|
// for each bracket, find its highest green ancestor
|
|
// 0 cannot be in a green pair, its highest green ancestor is itself
|
|
std::vector<unsigned> highest_green_ancestor(braces_.size(), 0);
|
|
for (unsigned b = 0; b != braces_.size(); ++b)
|
|
{
|
|
highest_green_ancestor[b] = b;
|
|
int ancestor = braces_[b];
|
|
// Note that ancestor strictly decreases
|
|
// FIXME is there a smarter way to do that?
|
|
while (ancestor >= 0)
|
|
{
|
|
if (empty_green[ancestor] & is_green)
|
|
highest_green_ancestor[b] = ancestor;
|
|
ancestor = braces_[ancestor];
|
|
}
|
|
if (highest_green_ancestor[b] != b)
|
|
empty_green[b] |= is_empty; // mark brace for removal
|
|
}
|
|
for (auto& n : nodes_)
|
|
if (n.second >= 0)
|
|
n.second = highest_green_ancestor[n.second];
|
|
|
|
// find red and green signals to emit
|
|
// also compute the number of braces to remove for renumbering
|
|
std::vector<unsigned> decr_by(braces_.size());
|
|
unsigned decr = 0;
|
|
for (unsigned i = 0; i != braces_.size(); ++i)
|
|
{
|
|
if (empty_green[i] & is_empty)
|
|
{
|
|
// Step A5 renumber braces
|
|
++decr;
|
|
|
|
// Step A3 emit red
|
|
red = std::min(red, 2*i);
|
|
}
|
|
else if (empty_green[i] & is_green)
|
|
{
|
|
// Step A4 emit green
|
|
green = std::min(green, 2*i+1);
|
|
}
|
|
|
|
decr_by[i] = decr;
|
|
}
|
|
|
|
std::vector<int> new_braces(braces_.size() - decr);
|
|
for (auto& n : nodes_)
|
|
{
|
|
if (n.second >= 0)
|
|
{
|
|
unsigned i = n.second;
|
|
int j = braces_[i] >=0 ? braces_[i] - decr_by[braces_[i]] : -1;
|
|
new_braces[i - decr_by[i]] = j;
|
|
n.second = i - decr_by[i];
|
|
}
|
|
}
|
|
std::swap(braces_, new_braces);
|
|
|
|
return std::min(red, green);
|
|
}
|
|
|
|
};
|
|
|
|
// Compute a vector of letters from a given support
|
|
std::vector<bdd>
|
|
letters(bdd allap)
|
|
{
|
|
std::vector<bdd> res;
|
|
bdd all = bddtrue;
|
|
while (all != bddfalse)
|
|
{
|
|
bdd one = bdd_satoneset(all, allap, bddfalse);
|
|
all -= one;
|
|
res.emplace_back(one);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
class safra_support
|
|
{
|
|
const std::vector<bdd>& state_supports;
|
|
std::unordered_map<bdd, std::vector<bdd>, bdd_hash> cache;
|
|
|
|
public:
|
|
safra_support(const std::vector<bdd>& s): state_supports(s) {}
|
|
|
|
const std::vector<bdd>&
|
|
get(const safra_state& s)
|
|
{
|
|
bdd supp = bddtrue;
|
|
for (const auto& n : s.nodes_)
|
|
supp &= state_supports[n.first];
|
|
auto it = cache.find(supp);
|
|
if (it == cache.end())
|
|
it = cache.emplace(supp, letters(supp)).first;
|
|
return it->second;
|
|
}
|
|
};
|
|
}
|
|
|
|
std::vector<char> find_scc_paths(const scc_info& scc);
|
|
|
|
safra_state
|
|
safra_state::compute_succ(const const_twa_graph_ptr& aut,
|
|
const bdd& ap,
|
|
const scc_info& scc,
|
|
const std::vector<bdd>& implications,
|
|
const std::vector<char>& is_connected,
|
|
bool use_scc,
|
|
bool use_simulation) const
|
|
{
|
|
// FIXME: we manipulate one safra_build at a time: how can we optimize/avoid
|
|
// allocation/deallocation?
|
|
safra_build ss(braces_);
|
|
for (const auto& node: nodes_)
|
|
{
|
|
for (const auto& t: aut->out(node.first))
|
|
{
|
|
if (!bdd_implies(ap, t.cond))
|
|
continue;
|
|
// Check if we are leaving the SCC, if so we delete all the
|
|
// braces as no cycles can be found with that node
|
|
if (use_scc && scc.scc_of(node.first) != scc.scc_of(t.dst))
|
|
if (scc.is_accepting_scc(scc.scc_of(t.dst)))
|
|
// Entering accepting SCC so add brace
|
|
ss.update_succ(-1, t.dst, { 0 });
|
|
else
|
|
// When entering non accepting SCC don't create any braces
|
|
ss.update_succ(-1, t.dst, { /* empty */ });
|
|
else
|
|
ss.update_succ(node.second, t.dst, t.acc);
|
|
}
|
|
}
|
|
if (use_simulation)
|
|
ss.merge_redundant_states(implications, scc, is_connected);
|
|
unsigned color = ss.finalize_construction();
|
|
return safra_state(std::move(ss), color);
|
|
}
|
|
|
|
// Called only to initialize first state
|
|
safra_state::safra_state(state_t val, bool accepting_scc)
|
|
{
|
|
if (!accepting_scc)
|
|
{
|
|
// -1 means "no braces"
|
|
nodes_.emplace_back(val, -1);
|
|
}
|
|
else
|
|
{
|
|
braces_.emplace_back(-1);
|
|
nodes_.emplace_back(val, 0);
|
|
}
|
|
}
|
|
|
|
safra_state::safra_state(safra_build&& s, unsigned c)
|
|
: braces_(std::move(s.braces_))
|
|
, nodes_(std::make_move_iterator(s.nodes_.begin()),
|
|
std::make_move_iterator(s.nodes_.end()))
|
|
, color_(c)
|
|
{}
|
|
|
|
bool
|
|
safra_state::operator<(const safra_state& other) const
|
|
{
|
|
// FIXME what is the right, if any, comparison to perform?
|
|
return braces_ == other.braces_ ? nodes_ < other.nodes_
|
|
: braces_ < other.braces_;
|
|
}
|
|
size_t
|
|
safra_state::hash() const
|
|
{
|
|
size_t res = 0;
|
|
for (const auto& p : nodes_)
|
|
{
|
|
res ^= (res << 3) ^ p.first;
|
|
res ^= (res << 3) ^ p.second;
|
|
}
|
|
for (const auto& b : braces_)
|
|
res ^= (res << 3) ^ b;
|
|
return res;
|
|
}
|
|
|
|
bool
|
|
safra_state::operator==(const safra_state& other) const
|
|
{
|
|
return nodes_ == other.nodes_ && braces_ == other.braces_;
|
|
}
|
|
|
|
// res[i + scccount*j] = 1 iff SCC i is reachable from SCC j
|
|
std::vector<char>
|
|
find_scc_paths(const scc_info& scc)
|
|
{
|
|
unsigned scccount = scc.scc_count();
|
|
std::vector<char> res(scccount * scccount, 0);
|
|
for (unsigned i = 0; i != scccount; ++i)
|
|
res[i + scccount * i] = 1;
|
|
for (unsigned i = 0; i != scccount; ++i)
|
|
{
|
|
std::stack<unsigned> s;
|
|
s.push(i);
|
|
while (!s.empty())
|
|
{
|
|
unsigned src = s.top();
|
|
s.pop();
|
|
for (unsigned d: scc.succ(src))
|
|
{
|
|
s.push(d);
|
|
unsigned idx = scccount * i + d;
|
|
res[idx] = 1;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
twa_graph_ptr
|
|
tgba_determinize(const const_twa_graph_ptr& a,
|
|
bool pretty_print, bool use_scc,
|
|
bool use_simulation, bool use_stutter)
|
|
{
|
|
if (!a->is_existential())
|
|
throw std::runtime_error
|
|
("tgba_determinize() does not support alternation");
|
|
if (is_universal(a))
|
|
return std::const_pointer_cast<twa_graph>(a);
|
|
|
|
// Degeneralize
|
|
const_twa_graph_ptr aut;
|
|
std::vector<bdd> implications;
|
|
{
|
|
twa_graph_ptr aut_tmp = spot::degeneralize_tba(a);
|
|
if (pretty_print)
|
|
aut_tmp->copy_state_names_from(a);
|
|
if (use_simulation)
|
|
{
|
|
aut_tmp = spot::scc_filter(aut_tmp);
|
|
auto aut2 = simulation(aut_tmp, &implications);
|
|
if (pretty_print)
|
|
aut2->copy_state_names_from(aut_tmp);
|
|
aut_tmp = aut2;
|
|
}
|
|
aut = aut_tmp;
|
|
}
|
|
scc_info_options scc_opt = scc_info_options::TRACK_SUCCS;
|
|
// We do need to track states in SCC for stutter invariance (see below how
|
|
// supports are computed in this case)
|
|
if (use_stutter && aut->prop_stutter_invariant())
|
|
scc_opt = scc_info_options::TRACK_SUCCS | scc_info_options::TRACK_STATES;
|
|
scc_info scc = scc_info(aut, scc_opt);
|
|
std::vector<char> is_connected = find_scc_paths(scc);
|
|
|
|
// Compute the support of each state
|
|
std::vector<bdd> support(aut->num_states());
|
|
if (use_stutter && aut->prop_stutter_invariant())
|
|
{
|
|
// FIXME this could be improved
|
|
// supports of states should account for possible stuttering if we plan
|
|
// to use stuttering invariance
|
|
for (unsigned c = 0; c != scc.scc_count(); ++c)
|
|
{
|
|
bdd c_supp = scc.scc_ap_support(c);
|
|
for (const auto& su: scc.succ(c))
|
|
c_supp &= support[scc.one_state_of(su)];
|
|
for (unsigned st: scc.states_of(c))
|
|
support[st] = c_supp;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (unsigned i = 0; i != aut->num_states(); ++i)
|
|
{
|
|
bdd res = bddtrue;
|
|
for (const auto& e : aut->out(i))
|
|
res &= bdd_support(e.cond);
|
|
support[i] = res;
|
|
}
|
|
}
|
|
|
|
safra_support safra2letters(support);
|
|
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->copy_ap_of(aut);
|
|
res->prop_copy(aut,
|
|
{ false, // state based
|
|
false, // inherently_weak
|
|
false, false, // deterministic
|
|
true, // complete
|
|
true // stutter inv
|
|
});
|
|
|
|
// Given a safra_state get its associated state in output automata.
|
|
// Required to create new edges from 2 safra-state
|
|
power_set seen;
|
|
// As per the standard, references to elements in a std::unordered_set or
|
|
// std::unordered_map are invalidated by erasure only.
|
|
std::deque<std::reference_wrapper<power_set::value_type>> todo;
|
|
auto get_state = [&res, &seen, &todo](const safra_state& s) -> unsigned
|
|
{
|
|
auto i = seen.emplace(std::make_pair(s, 0));
|
|
unsigned dst_num;
|
|
if (i.second) // insertion did take place
|
|
{
|
|
dst_num = res->new_state();
|
|
i.first->second = dst_num;
|
|
todo.emplace_back(*i.first);
|
|
}
|
|
else // element was already in seen
|
|
dst_num = i.first->second;
|
|
|
|
return dst_num;
|
|
};
|
|
|
|
{
|
|
unsigned init_state = aut->get_init_state_number();
|
|
bool start_accepting =
|
|
!use_scc || scc.is_accepting_scc(scc.scc_of(init_state));
|
|
safra_state init(init_state, start_accepting);
|
|
unsigned num = get_state(init); // inserts both in seen and in todo
|
|
res->set_init_state(num);
|
|
}
|
|
unsigned sets = 0;
|
|
while (!todo.empty())
|
|
{
|
|
const safra_state& curr = todo.front().get().first;
|
|
unsigned src_num = todo.front().get().second;
|
|
todo.pop_front();
|
|
compute_succs succs(curr, aut, seen, scc, implications, is_connected,
|
|
safra2letters.get(curr), use_scc, use_simulation,
|
|
use_stutter);
|
|
for (auto s = succs.begin(); s != succs.end(); ++s)
|
|
{
|
|
// Don't construct sink state as complete does a better job at this
|
|
if (s->nodes_.empty())
|
|
continue;
|
|
unsigned dst_num = get_state(*s);
|
|
if (s->color_ != -1U)
|
|
{
|
|
res->new_edge(src_num, dst_num, s.cond(), {s->color_});
|
|
// We only care about green acc which are odd
|
|
if (s->color_ % 2 == 1)
|
|
sets = std::max(s->color_ + 1, sets);
|
|
}
|
|
else
|
|
res->new_edge(src_num, dst_num, s.cond());
|
|
}
|
|
}
|
|
remove_dead_acc(res, sets);
|
|
// Acceptance is now min(odd) since we can emit Red on paths 0 with new opti
|
|
res->set_acceptance(sets, acc_cond::acc_code::parity(false, true, sets));
|
|
res->prop_universal(true);
|
|
res->prop_state_acc(false);
|
|
|
|
if (pretty_print)
|
|
res->set_named_prop("state-names", print_debug(aut, seen));
|
|
return res;
|
|
}
|
|
}
|