* src/ltlvisit/reduce.cc (reduce_visitor): Always reduce "a M b" to "a & b" if "a" is a pure eventual formula, remove the constraint on "b". * src/ltltest/reduccmp.test: Add two tests.
638 lines
13 KiB
C++
638 lines
13 KiB
C++
// Copyright (C) 2008, 2009, 2010, 2011 Laboratoire de Recherche et
|
|
// Développement de l'Epita (LRDE).
|
|
// Copyright (C) 2004, 2006, 2007 Laboratoire d'Informatique de
|
|
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
|
// Université Pierre et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "reduce.hh"
|
|
#include "basicreduce.hh"
|
|
#include "syntimpl.hh"
|
|
#include "ltlast/allnodes.hh"
|
|
#include <cassert>
|
|
|
|
#include "lunabbrev.hh"
|
|
#include "simpfg.hh"
|
|
#include "nenoform.hh"
|
|
#include "contain.hh"
|
|
|
|
namespace spot
|
|
{
|
|
namespace ltl
|
|
{
|
|
namespace
|
|
{
|
|
typedef union
|
|
{
|
|
unsigned v;
|
|
struct is_struct
|
|
{
|
|
bool eventual:1;
|
|
bool universal:1;
|
|
} is;
|
|
} eu_info;
|
|
|
|
static unsigned recurse_eu(const formula* f);
|
|
|
|
class eventual_universal_visitor: public const_visitor
|
|
{
|
|
public:
|
|
|
|
eventual_universal_visitor()
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~eventual_universal_visitor()
|
|
{
|
|
}
|
|
|
|
bool
|
|
is_eventual() const
|
|
{
|
|
return ret_.is.eventual;
|
|
}
|
|
|
|
bool
|
|
is_universal() const
|
|
{
|
|
return ret_.is.universal;
|
|
}
|
|
|
|
unsigned
|
|
eu() const
|
|
{
|
|
return ret_.v;
|
|
}
|
|
|
|
void
|
|
visit(const atomic_prop*)
|
|
{
|
|
ret_.v = 0;
|
|
}
|
|
|
|
void
|
|
visit(const constant*)
|
|
{
|
|
ret_.v = 0;
|
|
}
|
|
|
|
void
|
|
visit(const unop* uo)
|
|
{
|
|
const formula* f1 = uo->child();
|
|
if (uo->op() == unop::F)
|
|
{
|
|
ret_.v = recurse_eu(f1);
|
|
ret_.is.eventual = true;
|
|
return;
|
|
}
|
|
if (uo->op() == unop::G)
|
|
{
|
|
ret_.v = recurse_eu(f1);
|
|
ret_.is.universal = true;
|
|
return;
|
|
}
|
|
ret_.v = 0;
|
|
return;
|
|
}
|
|
|
|
void
|
|
visit(const binop* bo)
|
|
{
|
|
const formula* f1 = bo->first();
|
|
const formula* f2 = bo->second();
|
|
|
|
// Beware: (f U g) is purely eventual if both operands
|
|
// are purely eventual, unlike in the proceedings of
|
|
// Concur'00. (The revision of the paper available at
|
|
// http://www.bell-labs.com/project/TMP/ is fixed.) See
|
|
// also http://arxiv.org/abs/1011.4214 for a discussion
|
|
// about this problem. (Which we fixed in 2005 thanks
|
|
// to LBTT.)
|
|
|
|
// This means that we can use the following case to handle
|
|
// all cases of (f U g), (f R g), (f W g), (f M g) for
|
|
// universality and eventuality.
|
|
ret_.v = recurse_eu(f1) & recurse_eu(f2);
|
|
|
|
// we are left with the case where U, R, W, or M are actually
|
|
// used to represent F or G.
|
|
switch (bo->op())
|
|
{
|
|
case binop::Xor:
|
|
case binop::Equiv:
|
|
case binop::Implies:
|
|
return;
|
|
case binop::U:
|
|
if (f1 == constant::true_instance())
|
|
ret_.is.eventual = true;
|
|
return;
|
|
case binop::W:
|
|
if (f2 == constant::true_instance())
|
|
ret_.is.eventual = true;
|
|
return;
|
|
case binop::R:
|
|
if (f1 == constant::false_instance())
|
|
ret_.is.universal = true;
|
|
return;
|
|
case binop::M:
|
|
if (f2 == constant::false_instance())
|
|
ret_.is.universal = true;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const automatop*)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const multop* mo)
|
|
{
|
|
unsigned mos = mo->size();
|
|
assert(mos != 0);
|
|
ret_.v = recurse_eu(mo->nth(0));
|
|
for (unsigned i = 1; i < mos && ret_.v != 0; ++i)
|
|
ret_.v &= recurse_eu(mo->nth(i));
|
|
}
|
|
|
|
private:
|
|
eu_info ret_;
|
|
};
|
|
|
|
static unsigned
|
|
recurse_eu(const formula* f)
|
|
{
|
|
eventual_universal_visitor v;
|
|
const_cast<formula*>(f)->accept(v);
|
|
return v.eu();
|
|
}
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
class reduce_visitor: public visitor
|
|
{
|
|
public:
|
|
|
|
reduce_visitor(int opt)
|
|
: opt_(opt)
|
|
{
|
|
}
|
|
|
|
virtual ~reduce_visitor()
|
|
{
|
|
}
|
|
|
|
formula*
|
|
result() const
|
|
{
|
|
return result_;
|
|
}
|
|
|
|
void
|
|
visit(atomic_prop* ap)
|
|
{
|
|
formula* f = ap->clone();
|
|
result_ = f;
|
|
}
|
|
|
|
void
|
|
visit(constant* c)
|
|
{
|
|
result_ = c;
|
|
}
|
|
|
|
void
|
|
visit(unop* uo)
|
|
{
|
|
result_ = recurse(uo->child());
|
|
|
|
switch (uo->op())
|
|
{
|
|
case unop::Not:
|
|
result_ = unop::instance(unop::Not, result_);
|
|
return;
|
|
|
|
case unop::X:
|
|
result_ = unop::instance(unop::X, result_);
|
|
return;
|
|
|
|
case unop::F:
|
|
/* If f is a pure eventuality formula then F(f)=f. */
|
|
if (!(opt_ & Reduce_Eventuality_And_Universality)
|
|
|| !is_eventual(result_))
|
|
result_ = unop::instance(unop::F, result_);
|
|
return;
|
|
|
|
case unop::G:
|
|
/* If f is a pure universality formula then G(f)=f. */
|
|
if (!(opt_ & Reduce_Eventuality_And_Universality)
|
|
|| !is_universal(result_))
|
|
result_ = unop::instance(unop::G, result_);
|
|
return;
|
|
|
|
case unop::Finish:
|
|
result_ = unop::instance(unop::Finish, result_);
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(binop* bo)
|
|
{
|
|
binop::type op = bo->op();
|
|
|
|
formula* f2 = recurse(bo->second());
|
|
eu_info f2i = { recurse_eu(f2) };
|
|
|
|
if (opt_ & Reduce_Eventuality_And_Universality)
|
|
{
|
|
/* If b is a pure eventuality formula then a U b = b.
|
|
If b is a pure universality formula a R b = b. */
|
|
if ((f2i.is.eventual && (op == binop::U))
|
|
|| (f2i.is.universal && (op == binop::R)))
|
|
{
|
|
result_ = f2;
|
|
return;
|
|
}
|
|
}
|
|
|
|
formula* f1 = recurse(bo->first());
|
|
eu_info f1i = { recurse_eu(f1) };
|
|
if (opt_ & Reduce_Eventuality_And_Universality)
|
|
{
|
|
/* If a is a pure eventuality formula then a M b = a & b.
|
|
If a is a pure universality formula a W b = a|b. */
|
|
if (f1i.is.eventual && (op == binop::M))
|
|
{
|
|
result_ = multop::instance(multop::And, f1, f2);
|
|
return;
|
|
}
|
|
if (f1i.is.universal && (op == binop::W))
|
|
{
|
|
result_ = multop::instance(multop::Or, f1, f2);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/* case of implies */
|
|
if (opt_ & Reduce_Syntactic_Implications)
|
|
{
|
|
switch (op)
|
|
{
|
|
case binop::Xor:
|
|
case binop::Equiv:
|
|
case binop::Implies:
|
|
break;
|
|
|
|
case binop::U:
|
|
/* a < b => a U b = b */
|
|
if (syntactic_implication(f1, f2))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
/* !b < a => a U b = Fb */
|
|
if (syntactic_implication_neg(f2, f1, false))
|
|
{
|
|
result_ = unop::instance(unop::F, f2);
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
/* a < b => a U (b U c) = (b U c) */
|
|
/* a < b => a U (b W c) = (b W c) */
|
|
{
|
|
binop* bo = dynamic_cast<binop*>(f2);
|
|
if (bo && (bo->op() == binop::U || bo->op() == binop::W)
|
|
&& syntactic_implication(f1, bo->first()))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case binop::R:
|
|
/* b < a => a R b = b */
|
|
if (syntactic_implication(f2, f1))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
/* b < !a => a R b = Gb */
|
|
if (syntactic_implication_neg(f2, f1, true))
|
|
{
|
|
result_ = unop::instance(unop::G, f2);
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
/* b < a => a R (b R c) = b R c */
|
|
/* b < a => a R (b M c) = b M c */
|
|
{
|
|
binop* bo = dynamic_cast<binop*>(f2);
|
|
if (bo && (bo->op() == binop::R || bo->op() == binop::M)
|
|
&& syntactic_implication(bo->first(), f1))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
}
|
|
/* a < b => a R (b R c) = a R c */
|
|
{
|
|
binop* bo = dynamic_cast<binop*>(f2);
|
|
if (bo && bo->op() == binop::R
|
|
&& syntactic_implication(f1, bo->first()))
|
|
{
|
|
result_ = binop::instance(binop::R, f1,
|
|
bo->second()->clone());
|
|
f2->destroy();
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case binop::W:
|
|
/* a < b => a W b = b */
|
|
if (syntactic_implication(f1, f2))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
/* !b < a => a W b = 1 */
|
|
if (syntactic_implication_neg(f2, f1, false))
|
|
{
|
|
result_ = constant::true_instance();
|
|
f1->destroy();
|
|
f2->destroy();
|
|
return;
|
|
}
|
|
/* a < b => a W (b W c) = (b W c) */
|
|
{
|
|
binop* bo = dynamic_cast<binop*>(f2);
|
|
if (bo && bo->op() == binop::W
|
|
&& syntactic_implication(f1, bo->first()))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case binop::M:
|
|
/* b < a => a M b = b */
|
|
if (syntactic_implication(f2, f1))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
/* b < !a => a M b = 0 */
|
|
if (syntactic_implication_neg(f2, f1, true))
|
|
{
|
|
result_ = constant::false_instance();
|
|
f1->destroy();
|
|
f2->destroy();
|
|
return;
|
|
}
|
|
/* b < a => a M (b M c) = b M c */
|
|
{
|
|
binop* bo = dynamic_cast<binop*>(f2);
|
|
if (bo && bo->op() == binop::M
|
|
&& syntactic_implication(bo->first(), f1))
|
|
{
|
|
result_ = f2;
|
|
f1->destroy();
|
|
return;
|
|
}
|
|
}
|
|
/* a < b => a M (b M c) = a M c */
|
|
/* a < b => a M (b R c) = a M c */
|
|
{
|
|
binop* bo = dynamic_cast<binop*>(f2);
|
|
if (bo && (bo->op() == binop::M || bo->op() == binop::R)
|
|
&& syntactic_implication(f1, bo->first()))
|
|
{
|
|
result_ = binop::instance(binop::M, f1,
|
|
bo->second()->clone());
|
|
f2->destroy();
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
result_ = binop::instance(op, f1, f2);
|
|
}
|
|
|
|
void
|
|
visit(automatop*)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(multop* mo)
|
|
{
|
|
unsigned mos = mo->size();
|
|
multop::vec* res = new multop::vec;
|
|
|
|
for (unsigned i = 0; i < mos; ++i)
|
|
res->push_back(recurse(mo->nth(i)));
|
|
|
|
if (opt_ & Reduce_Syntactic_Implications)
|
|
{
|
|
|
|
bool removed = true;
|
|
multop::vec::iterator f1;
|
|
multop::vec::iterator f2;
|
|
|
|
while (removed)
|
|
{
|
|
removed = false;
|
|
f2 = f1 = res->begin();
|
|
++f1;
|
|
while (f1 != res->end())
|
|
{
|
|
assert(f1 != f2);
|
|
// a < b => a + b = b
|
|
// a < b => a & b = a
|
|
if ((syntactic_implication(*f1, *f2) && // f1 < f2
|
|
(mo->op() == multop::Or)) ||
|
|
((syntactic_implication(*f2, *f1)) && // f2 < f1
|
|
(mo->op() == multop::And)))
|
|
{
|
|
// We keep f2
|
|
(*f1)->destroy();
|
|
res->erase(f1);
|
|
removed = true;
|
|
break;
|
|
}
|
|
else if ((syntactic_implication(*f2, *f1) && // f2 < f1
|
|
(mo->op() == multop::Or)) ||
|
|
((syntactic_implication(*f1, *f2)) && // f1 < f2
|
|
(mo->op() == multop::And)))
|
|
{
|
|
// We keep f1
|
|
(*f2)->destroy();
|
|
res->erase(f2);
|
|
removed = true;
|
|
break;
|
|
}
|
|
else
|
|
++f1;
|
|
}
|
|
}
|
|
|
|
/* f1 < !f2 => f1 & f2 = false
|
|
!f1 < f2 => f1 | f2 = true */
|
|
for (f1 = res->begin(); f1 != res->end(); f1++)
|
|
for (f2 = res->begin(); f2 != res->end(); f2++)
|
|
if (f1 != f2 &&
|
|
syntactic_implication_neg(*f1, *f2,
|
|
mo->op() != multop::Or))
|
|
{
|
|
for (multop::vec::iterator j = res->begin();
|
|
j != res->end(); j++)
|
|
(*j)->destroy();
|
|
res->clear();
|
|
delete res;
|
|
if (mo->op() == multop::Or)
|
|
result_ = constant::true_instance();
|
|
else
|
|
result_ = constant::false_instance();
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
if (!res->empty())
|
|
{
|
|
result_ = multop::instance(mo->op(), res);
|
|
return;
|
|
}
|
|
assert(0);
|
|
}
|
|
|
|
formula*
|
|
recurse(formula* f)
|
|
{
|
|
return reduce(f, opt_);
|
|
}
|
|
|
|
protected:
|
|
formula* result_;
|
|
int opt_;
|
|
};
|
|
|
|
} // anonymous
|
|
|
|
formula*
|
|
reduce(const formula* f, int opt)
|
|
{
|
|
formula* f1;
|
|
formula* f2;
|
|
formula* prev = 0;
|
|
|
|
int n = 0;
|
|
|
|
while (f != prev)
|
|
{
|
|
++n;
|
|
assert(n < 100);
|
|
if (prev)
|
|
{
|
|
prev->destroy();
|
|
prev = const_cast<formula*>(f);
|
|
}
|
|
else
|
|
{
|
|
prev = f->clone();
|
|
}
|
|
f1 = unabbreviate_logic(f);
|
|
f2 = simplify_f_g(f1);
|
|
f1->destroy();
|
|
f1 = negative_normal_form(f2);
|
|
f2->destroy();
|
|
f2 = f1;
|
|
|
|
if (opt & Reduce_Basics)
|
|
{
|
|
f1 = basic_reduce(f2);
|
|
f2->destroy();
|
|
f2 = f1;
|
|
}
|
|
|
|
if (opt & (Reduce_Syntactic_Implications
|
|
| Reduce_Eventuality_And_Universality))
|
|
{
|
|
reduce_visitor v(opt);
|
|
f2->accept(v);
|
|
f1 = v.result();
|
|
f2->destroy();
|
|
f2 = f1;
|
|
}
|
|
|
|
|
|
if (opt & (Reduce_Containment_Checks
|
|
| Reduce_Containment_Checks_Stronger))
|
|
{
|
|
formula* f1 =
|
|
reduce_tau03(f2,
|
|
opt & Reduce_Containment_Checks_Stronger);
|
|
f2->destroy();
|
|
f2 = f1;
|
|
}
|
|
f = f2;
|
|
}
|
|
prev->destroy();
|
|
return const_cast<formula*>(f);
|
|
}
|
|
|
|
bool
|
|
is_eventual(const formula* f)
|
|
{
|
|
eventual_universal_visitor v;
|
|
const_cast<formula*>(f)->accept(v);
|
|
return v.is_eventual();
|
|
}
|
|
|
|
bool
|
|
is_universal(const formula* f)
|
|
{
|
|
eventual_universal_visitor v;
|
|
const_cast<formula*>(f)->accept(v);
|
|
return v.is_universal();
|
|
}
|
|
}
|
|
}
|