Current implementation of merge_states fails on certain self-loops. Updated implementation to take them into account and use a hashbased implementation to speed up calculations. Moreover, merge_states() is now aware of "state-player", just like defrag_states_ * spot/twa/twagraph.cc: Here * spot/twaalgos/game.cc: Fix odd cycle for sink * spot/twaalgos/synthesis.cc: Adapt split_det pipeline * tests/python/_synthesis.ipynb: Tests
1217 lines
41 KiB
C++
1217 lines
41 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2017-2018, 2020-2021 Laboratoire de Recherche et
|
|
// Développement de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
|
|
#include <utility>
|
|
|
|
#include <spot/misc/timer.hh>
|
|
#include <spot/twaalgos/game.hh>
|
|
#include <spot/misc/bddlt.hh>
|
|
#include <spot/twaalgos/sccinfo.hh>
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
static const std::vector<bool>*
|
|
ensure_game(const const_twa_graph_ptr& arena, const char* fnname)
|
|
{
|
|
auto owner = arena->get_named_prop<std::vector<bool>>("state-player");
|
|
if (!owner)
|
|
throw std::runtime_error
|
|
(std::string(fnname) + ": automaton should define \"state-player\"");
|
|
if (owner->size() != arena->num_states())
|
|
throw std::runtime_error
|
|
(std::string(fnname) + ": \"state-player\" should have "
|
|
"as many states as the automaton");
|
|
return owner;
|
|
}
|
|
|
|
static const std::vector<bool>*
|
|
ensure_parity_game(const const_twa_graph_ptr& arena, const char* fnname)
|
|
{
|
|
bool max, odd;
|
|
arena->acc().is_parity(max, odd, true);
|
|
if (!(max && odd))
|
|
throw std::runtime_error
|
|
(std::string(fnname) +
|
|
": arena must have max-odd acceptance condition");
|
|
for (const auto& e : arena->edges())
|
|
if (!e.acc)
|
|
throw std::runtime_error
|
|
(std::string(fnname) + ": arena must be colorized");
|
|
return ensure_game(arena, fnname);
|
|
}
|
|
|
|
// Internal structs
|
|
// winning regions for env and player
|
|
struct winner_t
|
|
{
|
|
std::vector<bool> has_winner_;
|
|
std::vector<bool> winner_;
|
|
|
|
inline bool operator()(unsigned v, bool p)
|
|
{
|
|
// returns true if player p wins v
|
|
// false otherwise
|
|
if (!has_winner_[v])
|
|
return false;
|
|
|
|
return winner_[v] == p;
|
|
}
|
|
|
|
inline void set(unsigned v, bool p)
|
|
{
|
|
has_winner_[v] = true;
|
|
winner_[v] = p;
|
|
}
|
|
|
|
inline void unset(unsigned v)
|
|
{
|
|
has_winner_[v] = false;
|
|
}
|
|
|
|
inline bool winner(unsigned v)
|
|
{
|
|
assert(has_winner_.at(v));
|
|
return winner_[v];
|
|
}
|
|
}; // winner_t
|
|
|
|
// When using scc decomposition we need to track the
|
|
// changes made to the graph
|
|
struct edge_stash_t
|
|
{
|
|
edge_stash_t(unsigned num, unsigned dst, acc_cond::mark_t acc) noexcept
|
|
: e_num(num),
|
|
e_dst(dst),
|
|
e_acc(acc)
|
|
{
|
|
}
|
|
const unsigned e_num, e_dst;
|
|
const acc_cond::mark_t e_acc;
|
|
}; // edge_stash_t
|
|
|
|
// Internal structs used by parity_game
|
|
// Struct to change recursive calls to stack
|
|
struct work_t
|
|
{
|
|
work_t(unsigned wstep_, unsigned rd_, unsigned min_par_,
|
|
unsigned max_par_) noexcept
|
|
: wstep(wstep_),
|
|
rd(rd_),
|
|
min_par(min_par_),
|
|
max_par(max_par_)
|
|
{
|
|
}
|
|
const unsigned wstep, rd, min_par, max_par;
|
|
}; // work_t
|
|
|
|
// Collects information about an scc
|
|
// Used to detect special cases
|
|
struct subgame_info_t
|
|
{
|
|
typedef std::set<unsigned, std::greater<unsigned>> all_parities_t;
|
|
|
|
subgame_info_t() noexcept
|
|
{
|
|
}
|
|
|
|
subgame_info_t(bool empty, bool one_parity, bool one_player0,
|
|
bool one_player1, all_parities_t parities) noexcept
|
|
: is_empty(empty),
|
|
is_one_parity(one_parity),
|
|
is_one_player0(one_player0),
|
|
is_one_player1(one_player1),
|
|
all_parities(parities)
|
|
{};
|
|
bool is_empty; // empty subgame
|
|
bool is_one_parity; // only one parity appears in the subgame
|
|
// todo : Not used yet
|
|
bool is_one_player0; // one player subgame for player0 <-> p==false
|
|
bool is_one_player1; // one player subgame for player1 <-> p==true
|
|
all_parities_t all_parities;
|
|
}; // subgame_info_t
|
|
|
|
|
|
// A class to solve parity games
|
|
// The current implementation is inspired by
|
|
// by oink however without multicore and adapted to transition based
|
|
// acceptance
|
|
class parity_game
|
|
{
|
|
public:
|
|
|
|
bool solve(const twa_graph_ptr &arena)
|
|
{
|
|
// todo check if reordering states according to scc is worth it
|
|
set_up(arena);
|
|
// Start recursive zielonka in a bottom-up fashion on each scc
|
|
subgame_info_t subgame_info;
|
|
for (c_scc_idx_ = 0; c_scc_idx_ < info_->scc_count(); ++c_scc_idx_)
|
|
{
|
|
// Useless SCCs are winning for player 0.
|
|
if (!info_->is_useful_scc(c_scc_idx_))
|
|
{
|
|
for (unsigned v: c_states())
|
|
{
|
|
w_.set(v, false);
|
|
// The strategy for player 0 is to take the first
|
|
// available edge.
|
|
if ((*owner_ptr_)[v] == false)
|
|
for (const auto &e : arena_->out(v))
|
|
{
|
|
s_[v] = arena_->edge_number(e);
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
// Convert transitions leaving edges to self-loops
|
|
// and check if trivially solvable
|
|
subgame_info = fix_scc();
|
|
// If empty, the scc was trivially solved
|
|
if (!subgame_info.is_empty)
|
|
{
|
|
// Check for special cases
|
|
if (subgame_info.is_one_parity)
|
|
one_par_subgame_solver(subgame_info, max_abs_par_);
|
|
else
|
|
{
|
|
// "Regular" solver
|
|
max_abs_par_ = *subgame_info.all_parities.begin();
|
|
w_stack_.emplace_back(0, 0, 0, max_abs_par_);
|
|
zielonka();
|
|
}
|
|
}
|
|
}
|
|
// All done -> restore graph, i.e. undo self-looping
|
|
restore();
|
|
|
|
assert(std::all_of(w_.has_winner_.cbegin(), w_.has_winner_.cend(),
|
|
[](bool b)
|
|
{ return b; }));
|
|
assert(std::all_of(s_.cbegin(), s_.cend(),
|
|
[](unsigned e_idx)
|
|
{ return e_idx > 0; }));
|
|
|
|
// Put the solution as named property
|
|
region_t &w = *arena->get_or_set_named_prop<region_t>("state-winner");
|
|
strategy_t &s = *arena->get_or_set_named_prop<strategy_t>("strategy");
|
|
w.swap(w_.winner_);
|
|
s.resize(s_.size());
|
|
std::copy(s_.begin(), s_.end(), s.begin());
|
|
|
|
clean_up();
|
|
return w[arena->get_init_state_number()];
|
|
}
|
|
|
|
private:
|
|
|
|
// Returns the vector of states currently considered
|
|
// i.e. the states of the current scc
|
|
// c_scc_idx_ is set in the 'main' loop
|
|
inline const std::vector<unsigned> &c_states()
|
|
{
|
|
assert(info_);
|
|
return info_->states_of(c_scc_idx_);
|
|
}
|
|
|
|
void set_up(const twa_graph_ptr &arena)
|
|
{
|
|
owner_ptr_ = ensure_parity_game(arena, "solve_parity_game()");
|
|
arena_ = arena;
|
|
unsigned n_states = arena_->num_states();
|
|
// Resize data structures
|
|
subgame_.clear();
|
|
subgame_.resize(n_states, unseen_mark);
|
|
w_.has_winner_.clear();
|
|
w_.has_winner_.resize(n_states, 0);
|
|
w_.winner_.clear();
|
|
w_.winner_.resize(n_states, 0);
|
|
s_.clear();
|
|
s_.resize(n_states, -1);
|
|
// Init
|
|
rd_ = 0;
|
|
max_abs_par_ = arena_->get_acceptance().used_sets().max_set() - 1;
|
|
info_ = std::make_unique<scc_info>(arena_);
|
|
// Every edge leaving an scc needs to be "fixed"
|
|
// at some point.
|
|
// We store: number of edge fixed, original dst, original acc
|
|
change_stash_.clear();
|
|
change_stash_.reserve(info_->scc_count() * 2);
|
|
}
|
|
|
|
// Checks if an scc is empty and reports the occurring parities
|
|
// or special cases
|
|
inline subgame_info_t
|
|
inspect_scc(unsigned max_par)
|
|
{
|
|
subgame_info_t info;
|
|
info.is_empty = true;
|
|
info.is_one_player0 = true;
|
|
info.is_one_player1 = true;
|
|
for (unsigned v : c_states())
|
|
{
|
|
if (subgame_[v] != unseen_mark)
|
|
continue;
|
|
|
|
bool multi_edge = false;
|
|
for (const auto &e : arena_->out(v))
|
|
if (subgame_[e.dst] == unseen_mark)
|
|
{
|
|
info.is_empty = false;
|
|
unsigned this_par = e.acc.max_set() - 1;
|
|
if (this_par <= max_par)
|
|
{
|
|
info.all_parities.insert(this_par);
|
|
multi_edge = true;
|
|
}
|
|
}
|
|
if (multi_edge)
|
|
{
|
|
// This state has multiple edges, so it is not
|
|
// a one player subgame for !owner
|
|
if ((*owner_ptr_)[v])
|
|
info.is_one_player1 = false;
|
|
else
|
|
info.is_one_player0 = false;
|
|
}
|
|
} // v
|
|
assert(info.all_parities.size() || info.is_empty);
|
|
info.is_one_parity = info.all_parities.size() == 1;
|
|
// Done
|
|
return info;
|
|
}
|
|
|
|
// Checks if an scc can be trivially solved,
|
|
// that is, all vertices of the scc belong to the
|
|
// attractor of a transition leaving the scc
|
|
inline subgame_info_t
|
|
fix_scc()
|
|
{
|
|
auto scc_acc = info_->acc_sets_of(c_scc_idx_);
|
|
// We will override all parities of edges leaving the scc
|
|
// Currently game is colored max odd
|
|
// So there is at least one color
|
|
bool added[] = {false, false};
|
|
unsigned par_pair[2];
|
|
unsigned scc_new_par = std::max(scc_acc.max_set(), 1u);
|
|
bool player_color_larger;
|
|
if (scc_new_par&1)
|
|
{
|
|
player_color_larger = false;
|
|
par_pair[1] = scc_new_par;
|
|
par_pair[0] = scc_new_par+1;
|
|
}
|
|
else
|
|
{
|
|
player_color_larger = true;
|
|
par_pair[1] = scc_new_par+1;
|
|
par_pair[0] = scc_new_par;
|
|
}
|
|
acc_cond::mark_t even_mark({par_pair[0]});
|
|
acc_cond::mark_t odd_mark({par_pair[1]});
|
|
|
|
// Only necessary to pass tests
|
|
max_abs_par_ = std::max(par_pair[0], par_pair[1]);
|
|
|
|
for (unsigned v : c_states())
|
|
{
|
|
assert(subgame_[v] == unseen_mark);
|
|
bool owner = (*owner_ptr_)[v];
|
|
for (auto &e : arena_->out(v))
|
|
{
|
|
// The outgoing edges are taken finitely often
|
|
// -> disregard parity
|
|
if (info_->scc_of(e.dst) != c_scc_idx_)
|
|
{
|
|
// Edge leaving the scc
|
|
change_stash_.emplace_back(arena_->edge_number(e),
|
|
e.dst, e.acc);
|
|
if (w_.winner(e.dst))
|
|
{
|
|
// Winning region off player ->
|
|
// odd mark if player
|
|
// else 1 (smallest loosing for env)
|
|
e.acc = owner ? odd_mark
|
|
: acc_cond::mark_t({1});
|
|
added[1] = true;
|
|
}
|
|
else
|
|
{
|
|
// Winning region of env ->
|
|
// even mark for env,
|
|
// else 0 (smallest loosing for player)
|
|
e.acc = !owner ? even_mark
|
|
: acc_cond::mark_t({0});
|
|
added[0] = true;
|
|
}
|
|
// Replace with self-loop
|
|
e.dst = e.src;
|
|
}
|
|
} // e
|
|
} // v
|
|
|
|
// Compute the attractors of the self-loops/transitions leaving scc
|
|
// These can be directly added to the winning states
|
|
// To avoid disregarding edges in attr computation we
|
|
// need to start with the larger color
|
|
// Todo come up with a test for this
|
|
unsigned dummy_rd;
|
|
|
|
for (bool p : {player_color_larger,
|
|
!player_color_larger})
|
|
{
|
|
if (added[p])
|
|
{
|
|
// Always take the larger,
|
|
// Otherwise states with an transition to a winning AND
|
|
// a loosing scc are treated incorrectly
|
|
attr(dummy_rd, p, par_pair[p], true, par_pair[p]);
|
|
}
|
|
}
|
|
|
|
if (added[0] || added[1])
|
|
// Fix "negative" strategy
|
|
for (unsigned v : c_states())
|
|
if (subgame_[v] != unseen_mark)
|
|
s_[v] = std::abs(s_[v]);
|
|
|
|
return inspect_scc(unseen_mark);
|
|
} // fix_scc
|
|
|
|
inline bool
|
|
attr(unsigned &rd, bool p, unsigned max_par,
|
|
bool acc_par, unsigned min_win_par,
|
|
bool no_check=false)
|
|
{
|
|
// In fix_scc, the attr computation is
|
|
// abused so we can not check ertain things
|
|
// Computes the attractor of the winning set of player p within a
|
|
// subgame given as rd.
|
|
// If acc_par is true, max_par transitions are also accepting and
|
|
// the subgame count will be increased
|
|
// The attracted vertices are directly added to the set
|
|
|
|
// Increase rd meaning we create a new subgame
|
|
if (acc_par)
|
|
rd = ++rd_;
|
|
// todo replace with a variant of topo sort ?
|
|
// As proposed in Oink! / PGSolver
|
|
// Needs the transposed graph however
|
|
|
|
assert((no_check || !acc_par) || (acc_par && (max_par&1) == p));
|
|
assert(!acc_par || (0 < min_win_par));
|
|
assert((min_win_par <= max_par) && (max_par <= max_abs_par_));
|
|
|
|
bool grown = false;
|
|
// We could also directly mark states as owned,
|
|
// instead of adding them to to_add first,
|
|
// possibly reducing the number of iterations.
|
|
// However by making the algorithm complete a loop
|
|
// before adding it is like a backward bfs and (generally) reduces
|
|
// the size of the strategy
|
|
static std::vector<unsigned> to_add;
|
|
|
|
assert(to_add.empty());
|
|
|
|
do
|
|
{
|
|
if (!to_add.empty())
|
|
{
|
|
grown = true;
|
|
for (unsigned v : to_add)
|
|
{
|
|
// v is winning
|
|
w_.set(v, p);
|
|
// Mark if demanded
|
|
if (acc_par)
|
|
{
|
|
assert(subgame_[v] == unseen_mark);
|
|
subgame_[v] = rd;
|
|
}
|
|
}
|
|
}
|
|
to_add.clear();
|
|
|
|
for (unsigned v : c_states())
|
|
{
|
|
if ((subgame_[v] < rd) || (w_(v, p)))
|
|
// Not in subgame or winning
|
|
continue;
|
|
|
|
bool is_owned = (*owner_ptr_)[v] == p;
|
|
bool wins = !is_owned;
|
|
// Loop over out-going
|
|
|
|
// Optim: If given the choice,
|
|
// we seek to go to the "oldest" subgame
|
|
// That is the subgame with the lowest rd value
|
|
unsigned min_subgame_idx = -1u;
|
|
for (const auto &e: arena_->out(v))
|
|
{
|
|
unsigned this_par = e.acc.max_set() - 1;
|
|
if ((subgame_[e.dst] >= rd) && (this_par <= max_par))
|
|
{
|
|
// Check if winning
|
|
if (w_(e.dst, p)
|
|
|| (acc_par && (min_win_par <= this_par)))
|
|
{
|
|
assert(!acc_par || (this_par < min_win_par) ||
|
|
(acc_par && (min_win_par <= this_par) &&
|
|
((this_par&1) == p)));
|
|
if (is_owned)
|
|
{
|
|
wins = true;
|
|
if (acc_par)
|
|
{
|
|
s_[v] = arena_->edge_number(e);
|
|
if (min_win_par <= this_par)
|
|
// max par edge
|
|
// change sign -> mark as needs
|
|
// to be possibly fixed
|
|
s_[v] = -s_[v];
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//snapping
|
|
if (subgame_[e.dst] < min_subgame_idx)
|
|
{
|
|
s_[v] = arena_->edge_number(e);
|
|
min_subgame_idx = subgame_[e.dst];
|
|
if (!p)
|
|
// No optim for env
|
|
break;
|
|
}
|
|
}
|
|
}// owned
|
|
}
|
|
else
|
|
{
|
|
if (!is_owned)
|
|
{
|
|
wins = false;
|
|
break;
|
|
}
|
|
} // winning
|
|
} // subgame
|
|
}// for edges
|
|
if (wins)
|
|
to_add.push_back(v);
|
|
} // for v
|
|
} while (!to_add.empty());
|
|
// done
|
|
|
|
assert(to_add.empty());
|
|
return grown;
|
|
}
|
|
|
|
// We need to check if transitions that are accepted due
|
|
// to their parity remain in the winning region of p
|
|
inline bool
|
|
fix_strat_acc(unsigned rd, bool p, unsigned min_win_par, unsigned max_par)
|
|
{
|
|
for (unsigned v : c_states())
|
|
{
|
|
// Only current attractor and owned
|
|
// and winning vertices are concerned
|
|
if ((subgame_[v] != rd) || !w_(v, p)
|
|
|| ((*owner_ptr_)[v] != p) || (s_[v] > 0))
|
|
continue;
|
|
|
|
// owned winning vertex of attractor
|
|
// Get the strategy edge
|
|
s_[v] = -s_[v];
|
|
const auto &e_s = arena_->edge_storage(s_[v]);
|
|
// Optimization only for player
|
|
if (!p && w_(e_s.dst, p))
|
|
// If current strat is admissible -> nothing to do
|
|
// for env
|
|
continue;
|
|
|
|
// This is an accepting edge that is no longer admissible
|
|
// or we seek a more desirable edge (for player)
|
|
assert(min_win_par <= e_s.acc.max_set() - 1);
|
|
assert(e_s.acc.max_set() - 1 <= max_par);
|
|
|
|
// Strategy heuristic : go to the oldest subgame
|
|
unsigned min_subgame_idx = -1u;
|
|
|
|
s_[v] = -1;
|
|
for (const auto &e_fix : arena_->out(v))
|
|
{
|
|
if (subgame_[e_fix.dst] >= rd)
|
|
{
|
|
unsigned this_par = e_fix.acc.max_set() - 1;
|
|
// This edge must have less than max_par,
|
|
// otherwise it would have already been attracted
|
|
assert((this_par <= max_par)
|
|
|| ((this_par&1) != (max_par&1)));
|
|
// if it is accepting and leads to the winning region
|
|
// -> valid fix
|
|
if ((min_win_par <= this_par)
|
|
&& (this_par <= max_par)
|
|
&& w_(e_fix.dst, p)
|
|
&& (subgame_[e_fix.dst] < min_subgame_idx))
|
|
{
|
|
// Max par edge to older subgame found
|
|
s_[v] = arena_->edge_number(e_fix);
|
|
min_subgame_idx = subgame_[e_fix.dst];
|
|
}
|
|
}
|
|
}
|
|
if (s_[v] == -1)
|
|
// NO fix found
|
|
// This state is NOT won by p due to any accepting edges
|
|
return true; // true -> grown
|
|
}
|
|
// Nothing to fix or all fixed
|
|
return false; // false -> not grown == all good
|
|
}
|
|
|
|
inline void zielonka()
|
|
{
|
|
while (!w_stack_.empty())
|
|
{
|
|
auto this_work = w_stack_.back();
|
|
w_stack_.pop_back();
|
|
|
|
switch (this_work.wstep)
|
|
{
|
|
case (0):
|
|
{
|
|
assert(this_work.rd == 0);
|
|
assert(this_work.min_par == 0);
|
|
|
|
unsigned rd;
|
|
assert(this_work.max_par <= max_abs_par_);
|
|
|
|
// Check if empty and get parities
|
|
subgame_info_t subgame_info =
|
|
inspect_scc(this_work.max_par);
|
|
|
|
if (subgame_info.is_empty)
|
|
// Nothing to do
|
|
break;
|
|
if (subgame_info.is_one_parity)
|
|
{
|
|
// Can be trivially solved
|
|
one_par_subgame_solver(subgame_info, this_work.max_par);
|
|
break;
|
|
}
|
|
|
|
// Compute the winning parity boundaries
|
|
// -> Priority compression
|
|
// Optional, improves performance
|
|
// Highest actually occurring
|
|
unsigned max_par = *subgame_info.all_parities.begin();
|
|
unsigned min_win_par = max_par;
|
|
while ((min_win_par > 2) &&
|
|
(!subgame_info.all_parities.count(min_win_par-1)))
|
|
min_win_par -= 2;
|
|
assert(max_par > 0);
|
|
assert(!subgame_info.all_parities.empty());
|
|
assert(min_win_par > 0);
|
|
|
|
// Get the player
|
|
bool p = min_win_par&1;
|
|
assert((max_par&1) == (min_win_par&1));
|
|
// Attraction to highest par
|
|
// This increases rd_ and passes it to rd
|
|
attr(rd, p, max_par, true, min_win_par);
|
|
// All those attracted get subgame_[v] <- rd
|
|
|
|
// Continuation
|
|
w_stack_.emplace_back(1, rd, min_win_par, max_par);
|
|
// Recursion
|
|
w_stack_.emplace_back(0, 0, 0, min_win_par-1);
|
|
// Others attracted will have higher counts in subgame
|
|
break;
|
|
}
|
|
case (1):
|
|
{
|
|
unsigned rd = this_work.rd;
|
|
unsigned min_win_par = this_work.min_par;
|
|
unsigned max_par = this_work.max_par;
|
|
assert((min_win_par&1) == (max_par&1));
|
|
bool p = min_win_par&1;
|
|
// Check if the attractor of w_[!p] is equal to w_[!p]
|
|
// if so, player wins if there remain accepting transitions
|
|
// for max_par (see fix_strat_acc)
|
|
// This does not increase but reuse rd
|
|
bool grown = attr(rd, !p, max_par, false, min_win_par);
|
|
// todo investigate: A is an attractor, so the only way that
|
|
// attr(w[!p]) != w[!p] is if the max par "exit" edges lead
|
|
// to a trap for player/ exit the winning region of the
|
|
// player so we can do a fast check instead of the
|
|
// generic attr computation which only needs to be done
|
|
// if the fast check is positive
|
|
|
|
// Check if strategy needs to be fixed / is fixable
|
|
if (!grown)
|
|
// this only concerns parity accepting edges
|
|
grown = fix_strat_acc(rd, p, min_win_par, max_par);
|
|
// If !grown we are done, and the partitions are valid
|
|
|
|
if (grown)
|
|
{
|
|
// Reset current game without !p attractor
|
|
for (unsigned v : c_states())
|
|
if (!w_(v, !p) && (subgame_[v] >= rd))
|
|
{
|
|
// delete ownership
|
|
w_.unset(v);
|
|
// Mark as unseen
|
|
subgame_[v] = unseen_mark;
|
|
// Unset strat for testing
|
|
s_[v] = -1;
|
|
}
|
|
w_stack_.emplace_back(0, 0, 0, max_par);
|
|
// No need to do anything else
|
|
// the attractor of !p of this level is not changed
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
throw std::runtime_error("No valid workstep");
|
|
} // switch
|
|
} // while
|
|
} // zielonka
|
|
|
|
// Undo change to the graph made along the way
|
|
inline void restore()
|
|
{
|
|
// "Unfix" the edges leaving the sccs
|
|
// This is called once the game has been solved
|
|
for (auto &e_stash : change_stash_)
|
|
{
|
|
auto &e = arena_->edge_storage(e_stash.e_num);
|
|
e.dst = e_stash.e_dst;
|
|
e.acc = e_stash.e_acc;
|
|
}
|
|
// Done
|
|
}
|
|
|
|
// Empty all internal variables
|
|
inline void clean_up()
|
|
{
|
|
info_ = nullptr;
|
|
subgame_.clear();
|
|
w_.has_winner_.clear();
|
|
w_.winner_.clear();
|
|
s_.clear();
|
|
rd_ = 0;
|
|
max_abs_par_ = 0;
|
|
change_stash_.clear();
|
|
}
|
|
|
|
// Dedicated solver for special cases
|
|
inline void one_par_subgame_solver(const subgame_info_t &info,
|
|
unsigned max_par)
|
|
{
|
|
assert(info.all_parities.size() == 1);
|
|
// The entire subgame is won by the player of the only parity
|
|
// Any edge will do
|
|
// todo optim for smaller circuit
|
|
// This subgame gets its own counter
|
|
++rd_;
|
|
unsigned rd = rd_;
|
|
unsigned one_par = *info.all_parities.begin();
|
|
bool winner = one_par & 1;
|
|
assert(one_par <= max_par);
|
|
|
|
for (unsigned v : c_states())
|
|
{
|
|
if (subgame_[v] != unseen_mark)
|
|
continue;
|
|
// State of the subgame
|
|
subgame_[v] = rd;
|
|
w_.set(v, winner);
|
|
// Get the strategy
|
|
assert(s_[v] == -1);
|
|
for (const auto &e : arena_->out(v))
|
|
{
|
|
unsigned this_par = e.acc.max_set() - 1;
|
|
if ((subgame_[e.dst] >= rd) && (this_par <= max_par))
|
|
{
|
|
assert(this_par == one_par);
|
|
// Ok for strat
|
|
s_[v] = arena_->edge_number(e);
|
|
break;
|
|
}
|
|
}
|
|
assert((0 < s_[v]) && (s_[v] < unseen_mark));
|
|
}
|
|
// Done
|
|
}
|
|
|
|
const unsigned unseen_mark = std::numeric_limits<unsigned>::max();
|
|
|
|
twa_graph_ptr arena_;
|
|
const std::vector<bool> *owner_ptr_;
|
|
unsigned rd_;
|
|
winner_t w_;
|
|
// Subgame array similar to the one from oink!
|
|
std::vector<unsigned> subgame_;
|
|
// strategies for env and player; For synthesis only player is needed
|
|
// We need a signed value here in order to "fix" the strategy
|
|
// during construction
|
|
std::vector<long long> s_;
|
|
|
|
// Informations about sccs andthe current scc
|
|
std::unique_ptr<scc_info> info_;
|
|
unsigned max_abs_par_; // Max parity occurring in the current scc
|
|
// Info on the current scc
|
|
unsigned c_scc_idx_;
|
|
// Fixes made to the sccs that have to be undone
|
|
// before returning
|
|
std::vector<edge_stash_t> change_stash_;
|
|
// Change recursive calls to stack
|
|
std::vector<work_t> w_stack_;
|
|
};
|
|
|
|
} // anonymous
|
|
|
|
|
|
bool solve_parity_game(const twa_graph_ptr& arena)
|
|
{
|
|
parity_game pg;
|
|
return pg.solve(arena);
|
|
}
|
|
|
|
bool solve_game(const twa_graph_ptr& arena)
|
|
{
|
|
bool dummy1, dummy2;
|
|
auto& acc = arena->acc();
|
|
if (acc.is_t())
|
|
return solve_safety_game(arena);
|
|
if (!arena->acc().is_parity(dummy1, dummy2, true))
|
|
throw std::runtime_error
|
|
("solve_game(): unsupported acceptance condition.");
|
|
return solve_parity_game(arena);
|
|
}
|
|
|
|
void pg_print(std::ostream& os, const const_twa_graph_ptr& arena)
|
|
{
|
|
auto owner = ensure_parity_game(arena, "pg_print");
|
|
|
|
unsigned ns = arena->num_states();
|
|
unsigned init = arena->get_init_state_number();
|
|
os << "parity " << ns - 1 << ";\n";
|
|
std::vector<bool> seen(ns, false);
|
|
std::vector<unsigned> todo({init});
|
|
while (!todo.empty())
|
|
{
|
|
unsigned src = todo.back();
|
|
todo.pop_back();
|
|
if (seen[src])
|
|
continue;
|
|
seen[src] = true;
|
|
os << src << ' ';
|
|
os << arena->out(src).begin()->acc.max_set() - 1 << ' ';
|
|
os << (*owner)[src] << ' ';
|
|
bool first = true;
|
|
for (auto& e: arena->out(src))
|
|
{
|
|
if (!first)
|
|
os << ',';
|
|
first = false;
|
|
os << e.dst;
|
|
if (!seen[e.dst])
|
|
todo.push_back(e.dst);
|
|
}
|
|
if (src == init)
|
|
os << " \"INIT\"";
|
|
os << ";\n";
|
|
}
|
|
}
|
|
|
|
void alternate_players(spot::twa_graph_ptr& arena,
|
|
bool first_player, bool complete0)
|
|
{
|
|
auto um = arena->acc().unsat_mark();
|
|
if (!um.first && complete0)
|
|
throw std::runtime_error
|
|
("alternate_players(): Cannot complete monitor.");
|
|
|
|
unsigned sink_env = 0;
|
|
unsigned sink_con = 0;
|
|
|
|
std::vector<bool> seen(arena->num_states(), false);
|
|
unsigned init = arena->get_init_state_number();
|
|
std::vector<unsigned> todo({init});
|
|
auto owner = new std::vector<bool>(arena->num_states(), false);
|
|
(*owner)[init] = first_player;
|
|
while (!todo.empty())
|
|
{
|
|
unsigned src = todo.back();
|
|
todo.pop_back();
|
|
seen[src] = true;
|
|
bdd missing = bddtrue;
|
|
for (const auto& e: arena->out(src))
|
|
{
|
|
bool osrc = (*owner)[src];
|
|
if (complete0 && !osrc)
|
|
missing -= e.cond;
|
|
|
|
if (!seen[e.dst])
|
|
{
|
|
(*owner)[e.dst] = !osrc;
|
|
todo.push_back(e.dst);
|
|
}
|
|
else if ((*owner)[e.dst] == osrc)
|
|
{
|
|
delete owner;
|
|
throw std::runtime_error
|
|
("alternate_players(): Odd cycle detected.");
|
|
}
|
|
}
|
|
if (complete0 && !(*owner)[src] && missing != bddfalse)
|
|
{
|
|
if (sink_env == 0)
|
|
{
|
|
sink_env = arena->new_state();
|
|
sink_con = arena->new_state();
|
|
owner->push_back(true);
|
|
owner->push_back(false);
|
|
arena->new_edge(sink_con, sink_env, bddtrue, um.second);
|
|
arena->new_edge(sink_env, sink_con, bddtrue, um.second);
|
|
}
|
|
arena->new_edge(src, sink_env, missing, um.second);
|
|
assert(owner->at(src) != owner->at(sink_env));
|
|
}
|
|
}
|
|
|
|
assert([&]()
|
|
{
|
|
for (const auto& e : arena->edges())
|
|
if (owner->at(e.src) == owner->at(e.dst))
|
|
return false;
|
|
return true;
|
|
}() && "Not alternating");
|
|
|
|
arena->set_named_prop("state-player", owner);
|
|
}
|
|
|
|
twa_graph_ptr
|
|
highlight_strategy(twa_graph_ptr& aut,
|
|
int player0_color,
|
|
int player1_color)
|
|
{
|
|
auto owner = ensure_game(aut, "highlight_strategy()");
|
|
region_t* w = aut->get_named_prop<region_t>("state-winner");
|
|
strategy_t* s = aut->get_named_prop<strategy_t>("strategy");
|
|
if (!w)
|
|
throw std::runtime_error
|
|
("highlight_strategy(): "
|
|
"winning region unavailable, solve the game first");
|
|
if (!s)
|
|
throw std::runtime_error
|
|
("highlight_strategy(): strategy unavailable, solve the game first");
|
|
|
|
unsigned ns = aut->num_states();
|
|
auto* hl_edges = aut->get_or_set_named_prop<std::map<unsigned, unsigned>>
|
|
("highlight-edges");
|
|
auto* hl_states = aut->get_or_set_named_prop<std::map<unsigned, unsigned>>
|
|
("highlight-states");
|
|
|
|
if (unsigned sz = std::min(w->size(), s->size()); sz < ns)
|
|
ns = sz;
|
|
|
|
for (unsigned n = 0; n < ns; ++n)
|
|
{
|
|
int color = (*w)[n] ? player1_color : player0_color;
|
|
if (color == -1)
|
|
continue;
|
|
(*hl_states)[n] = color;
|
|
if ((*w)[n] == (*owner)[n])
|
|
(*hl_edges)[(*s)[n]] = color;
|
|
}
|
|
|
|
return aut;
|
|
}
|
|
|
|
void set_state_players(twa_graph_ptr arena, const region_t& owners)
|
|
{
|
|
set_state_players(arena, region_t(owners));
|
|
}
|
|
|
|
void set_state_players(twa_graph_ptr arena, region_t&& owners)
|
|
{
|
|
if (owners.size() != arena->num_states())
|
|
throw std::runtime_error
|
|
("set_state_players(): There must be as many owners as states");
|
|
|
|
arena->set_named_prop<region_t>("state-player",
|
|
new region_t(std::forward<region_t>(owners)));
|
|
}
|
|
|
|
void set_state_player(twa_graph_ptr arena, unsigned state, bool owner)
|
|
{
|
|
if (state >= arena->num_states())
|
|
throw std::runtime_error("set_state_player(): invalid state number");
|
|
|
|
region_t *owners = arena->get_named_prop<region_t>("state-player");
|
|
if (!owners)
|
|
throw std::runtime_error("set_state_player(): Can only set the state of "
|
|
"an individual "
|
|
"state if \"state-player\" already exists.");
|
|
if (owners->size() != arena->num_states())
|
|
throw std::runtime_error("set_state_player(): The \"state-player\" "
|
|
"vector has a different "
|
|
"size comparerd to the automaton! "
|
|
"Called new_state in between?");
|
|
|
|
(*owners)[state] = owner;
|
|
}
|
|
|
|
const region_t& get_state_players(const_twa_graph_ptr arena)
|
|
{
|
|
region_t *owners = arena->get_named_prop<region_t>
|
|
("state-player");
|
|
if (!owners)
|
|
throw std::runtime_error
|
|
("get_state_players(): state-player property not defined, not a game?");
|
|
|
|
return *owners;
|
|
}
|
|
|
|
bool get_state_player(const_twa_graph_ptr arena, unsigned state)
|
|
{
|
|
if (state >= arena->num_states())
|
|
throw std::runtime_error("get_state_player(): invalid state number");
|
|
|
|
region_t* owners = arena->get_named_prop<region_t>("state-player");
|
|
if (!owners)
|
|
throw std::runtime_error
|
|
("get_state_player(): state-player property not defined, not a game?");
|
|
|
|
return (*owners)[state];
|
|
}
|
|
|
|
|
|
const strategy_t& get_strategy(const_twa_graph_ptr arena)
|
|
{
|
|
auto strat_ptr = arena->get_named_prop<strategy_t>("strategy");
|
|
if (!strat_ptr)
|
|
throw std::runtime_error("get_strategy(): Named prop "
|
|
"\"strategy\" not set."
|
|
"Arena not solved?");
|
|
return *strat_ptr;
|
|
}
|
|
|
|
void set_strategy(twa_graph_ptr arena, const strategy_t& strat)
|
|
{
|
|
set_strategy(arena, strategy_t(strat));
|
|
}
|
|
void set_strategy(twa_graph_ptr arena, strategy_t&& strat)
|
|
{
|
|
if (arena->num_states() != strat.size())
|
|
throw std::runtime_error("set_strategy(): strategies need to have "
|
|
"the same size as the automaton.");
|
|
arena->set_named_prop<strategy_t>("strategy",
|
|
new strategy_t(std::forward<strategy_t>(strat)));
|
|
}
|
|
|
|
void set_synthesis_outputs(const twa_graph_ptr& arena, const bdd& outs)
|
|
{
|
|
arena->set_named_prop<bdd>("synthesis-outputs", new bdd(outs));
|
|
}
|
|
|
|
bdd get_synthesis_outputs(const const_twa_graph_ptr& arena)
|
|
{
|
|
if (auto outptr = arena->get_named_prop<bdd>("synthesis-outputs"))
|
|
return *outptr;
|
|
else
|
|
throw std::runtime_error
|
|
("get_synthesis_outputs(): synthesis-outputs not defined");
|
|
}
|
|
|
|
std::vector<std::string>
|
|
get_synthesis_output_aps(const const_twa_graph_ptr& arena)
|
|
{
|
|
std::vector<std::string> out_names;
|
|
|
|
bdd outs = get_synthesis_outputs(arena);
|
|
|
|
auto dict = arena->get_dict();
|
|
|
|
auto to_bdd = [&](const auto& x)
|
|
{
|
|
return bdd_ithvar(dict->has_registered_proposition(x, arena.get()));
|
|
};
|
|
|
|
for (const auto& ap : arena->ap())
|
|
if (bdd_implies(outs, to_bdd(ap)))
|
|
out_names.push_back(ap.ap_name());
|
|
|
|
return out_names;
|
|
}
|
|
|
|
|
|
void set_state_winners(twa_graph_ptr arena, const region_t& winners)
|
|
{
|
|
set_state_winners(arena, region_t(winners));
|
|
}
|
|
|
|
void set_state_winners(twa_graph_ptr arena, region_t&& winners)
|
|
{
|
|
if (winners.size() != arena->num_states())
|
|
throw std::runtime_error
|
|
("set_state_winners(): There must be as many winners as states");
|
|
|
|
arena->set_named_prop<region_t>("state-winner",
|
|
new region_t(std::forward<region_t>(winners)));
|
|
}
|
|
|
|
void set_state_winner(twa_graph_ptr arena, unsigned state, bool winner)
|
|
{
|
|
if (state >= arena->num_states())
|
|
throw std::runtime_error("set_state_winner(): invalid state number");
|
|
|
|
region_t *winners = arena->get_named_prop<region_t>("state-winner");
|
|
if (!winners)
|
|
throw std::runtime_error("set_state_winner(): Can only set the state of "
|
|
"an individual "
|
|
"state if \"state-winner\" already exists.");
|
|
if (winners->size() != arena->num_states())
|
|
throw std::runtime_error("set_state_winner(): The \"state-winnerr\" "
|
|
"vector has a different "
|
|
"size compared to the automaton! "
|
|
"Called new_state in between?");
|
|
|
|
(*winners)[state] = winner;
|
|
}
|
|
|
|
const region_t& get_state_winners(const_twa_graph_ptr arena)
|
|
{
|
|
region_t *winners = arena->get_named_prop<region_t>("state-winner");
|
|
if (!winners)
|
|
throw std::runtime_error
|
|
("get_state_winners(): state-winner property not defined, not a game?");
|
|
|
|
return *winners;
|
|
}
|
|
|
|
bool get_state_winner(const_twa_graph_ptr arena, unsigned state)
|
|
{
|
|
if (state >= arena->num_states())
|
|
throw std::runtime_error("get_state_winner(): invalid state number");
|
|
|
|
region_t* winners = arena->get_named_prop<region_t>("state-winner");
|
|
if (!winners)
|
|
throw std::runtime_error
|
|
("get_state_winner(): state-winner property not defined, not a game?");
|
|
|
|
return (*winners)[state];
|
|
}
|
|
|
|
|
|
bool solve_safety_game(const twa_graph_ptr& game)
|
|
{
|
|
if (!game->acc().is_t())
|
|
throw std::runtime_error
|
|
("solve_safety_game(): arena should have true acceptance");
|
|
|
|
auto owners = get_state_players(game);
|
|
|
|
unsigned ns = game->num_states();
|
|
auto winners = new region_t(ns, true);
|
|
game->set_named_prop("state-winner", winners);
|
|
auto strategy = new strategy_t(ns, 0);
|
|
game->set_named_prop("strategy", strategy);
|
|
|
|
// transposed is a reversed copy of game to compute predecessors
|
|
// more easily. It also keep track of the original edge iindex.
|
|
struct edge_data {
|
|
unsigned edgeidx;
|
|
};
|
|
digraph<void, edge_data> transposed;
|
|
// Reverse the automaton, compute the out degree of
|
|
// each state, and save dead-states in queue.
|
|
transposed.new_states(ns);
|
|
std::vector<unsigned> out_degree;
|
|
out_degree.reserve(ns);
|
|
std::vector<unsigned> queue;
|
|
for (unsigned s = 0; s < ns; ++s)
|
|
{
|
|
unsigned deg = 0;
|
|
for (auto& e: game->out(s))
|
|
{
|
|
transposed.new_edge(e.dst, e.src, game->edge_number(e));
|
|
++deg;
|
|
}
|
|
out_degree.push_back(deg);
|
|
if (deg == 0)
|
|
{
|
|
(*winners)[s] = false;
|
|
queue.push_back(s);
|
|
}
|
|
}
|
|
// queue is initially filled with dead-states, which are winning
|
|
// for player 0. Any predecessor owned by player 0 is therefore
|
|
// winning as well (check 1), and any predecessor owned by player
|
|
// 1 that has all its successors winning for player 0 (check 2) is
|
|
// also winning. Use queue to propagate everything.
|
|
// For the second check, we decrease out_degree by each edge leading
|
|
// to a state winning for player 0, so if out_degree reaches 0,
|
|
// we have ensured that all outgoing transitions are winning for 0.
|
|
//
|
|
// We use queue as a stack, to propagate bad states in DFS.
|
|
// However it would be ok to replace the vector by a std::deque
|
|
// to implement a BFS and build shorter strategies for player 0.
|
|
// Right no we are assuming that strategies for player 0 have
|
|
// limited uses, so we just avoid the overhead of std::deque in
|
|
// favor of the simpler std::vector.
|
|
while (!queue.empty())
|
|
{
|
|
unsigned s = queue.back();
|
|
queue.pop_back();
|
|
for (auto& e: transposed.out(s))
|
|
{
|
|
unsigned pred = e.dst;
|
|
if (!(*winners)[pred])
|
|
continue;
|
|
// check 1 || check 2
|
|
bool check1 = owners[pred] == false;
|
|
if (check1 || --out_degree[pred] == 0)
|
|
{
|
|
(*winners)[pred] = false;
|
|
queue.push_back(pred);
|
|
if (check1)
|
|
(*strategy)[pred] = e.edgeidx;
|
|
}
|
|
}
|
|
}
|
|
// Let's fill in the strategy for Player 1.
|
|
for (unsigned s = 0; s < ns; ++s)
|
|
if (owners[s] && (*winners)[s])
|
|
for (auto& e: game->out(s))
|
|
if ((*winners)[e.dst])
|
|
{
|
|
(*strategy)[s] = game->edge_number(e);
|
|
break;
|
|
}
|
|
|
|
return (*winners)[game->get_init_state_number()];
|
|
}
|
|
}
|